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CHAPTER 1. INTRODUCTION 

This thesis provides the technical development and analysis of a vehicle dynamics and 

automatic steering control model for use in a computer simulation. The objective of this 

study is to create a simulation to allow fast and robust controller design and to quickly 

evaluate the controller and vehicle performance when subjected to a sloped terrain. While 

the basic setup of the model enables it to be adaptive to any type of on or off-road vehicle 

with front, rear, or 4-wheel steer configurations, the detailed derivation looks at the response 

and characteristics of a rear steer combine harvester. 

In addition to analyzing the response on a sloped terrain, the simulation also considers 

changes in certain vehicle parameters. Vehicle response to a range of longitudinal speed, 

center of gravity position, and vehicle weight demonstrates the flexibility of the simulation to 

analyze several system components. 

Chapter 2 discusses the motivation and background for this study and gives an overview of 

the dynamics and controller models. Chapter 3 provides the details and derivations of these 

models and looks at the characteristics of the system. Chapter 4 examines some results of the 

simulation and discusses the system response for a range of parameters. Chapter 5 presents 

conclusions and a brief discussion of future work involving the development and validation 

of the model. The Appendix provides details of the model derivations and simulation code. 
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CHAPTER 2. BACKGROUND 

2.1 Motivation 

Precision navigation guidance has been a longstanding topic of great interest to agricultural 

researchers [8]. Precisely planted crop and accurately driven harvesting equipment leads to 

an increase in crop yield by reducing operator error and fatigue [6, 8, 13]. A successful 

guidance system yields desirable response on different terrains and for a variety of vehicle 

parameters, such as weight, speed, and center of gravity (CG) position [7]. 

Many guidance methods have been explored, but with advances in GPS technology, one 

common and effective type of guidance system uses GPS tracked vehicle position to 

maintain a desired path, commonly a straight line, as determined by the operator [5, 8, 9, 19] . 

The perpendicular distance of the vehicle from the path defines the lateral or off-track error, 

while the angle of the vehicle centerline with respect to the path is called the heading error. 

A steering controller calculates the steer angle to minimize the lateral and heading errors. 

The ability of the guidance system to follow the path depends on the controlled vehicle 

system. Many researchers have used a simplified kinematic model [8, 9, 19] to define the 

behavior of the vehicle. Although these models have been adequate for many situations, they 

do not allow modeling of a sloped terrain [6]. This study presents a modeling approach that 

uses the lateral forces created by the tire slip and the external force associated with the terrain 

slope to develop the equations of motion and controller design. This allows theoretical 



www.manaraa.com

3 

assessment of the effects of changes in speed, mass, CG position, and tires, all beyond the 

capability of a model based on kinematic assumptions. 

The model can also be used as the underlying dynamics and control for an operator-in-the- 

loop virtual vehicle simulator application, such as those mentioned by Baack [2] and Norris 

et al [17]. These types of simulations eliminate the necessity and associated cost of a full- 

scale prototype [17]. Simulations such as these could allow the engineer to visualize the 

operation and behavior and make real time changes. It also facilitates operator training and 

familiarity with the guidance and steering system. 

2.2 Overview of Model 

This section describes the controller design, the basic vehicle dynamics model, and the 

associated tire model. Table 2.1 provides nomenclature which follows standard SAE 

convention that will be used throughout the study. Chapter 3 presents the derivation of the 

models discussed in the following sections. 
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Table 2.1 Nomenclature of vehicle and simulation parameters 

Parameter D e s c riptio n 
a Distance from front ale to CG 
b Distance from rear axle to CG 
c ~ Cornering coefficient 
C~ Cornering stiffness of front tine 
C~ Cornering stiffness of rear tine 
Fy ~ Lateral force due to side slope 
F~ Lateral force on front tires 
FyR Lateral force on rear tires 

I Yaw moment of intertia (about the z-axis) 
L Wheel base 
M Vehicle mass 
r Vehicle yaw rate 
u Longitudinal velocity 
v Lateral velocity 
Vv Velocity vector of vehicle 
W Weight of vehicle 
Wf  Weight on front wheels 
WR Weight on rear wheels 
x Vehicle longitudinal axis (x-direction) 
X Vehicle position in world coordinate system (longitudinal trajectory) 
y Vehicle lateral ass (y-direction) 
Y Vehicle position in world coordinate system (lateral trajectory) 
of Front wheel slip angle 
a R Rear wheel slip angle 

(3 Sideslip angle 
8 f Front steer angle 
bR Rear steer angle 
B Angle of terrain slope 
yr Vehicle heading 
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~~ ~€~~4~ 

x 

(a) 

(b) 

~~ ~ ~~ 
~~~~,4~ 

Figure 2.1 (a) Basic feedback controller block diagram (b) PID controller 

2.2.1 Controller Model and Implementation 

Control systems provide "an output or response for a given input or stimulus [4, p2] ." The 

input, usually a desired response, is compared with the output, or actual response, creating an 

error signal that passes through the controller and system model (or plant) to generate a new 

output (see Figure 2.1 a). This feedback controller aims at driving the error signal to the zero. 

Many methods of control have been studied and applied [8] . Some examples include: a 

hybrid controller incorporating non-linear "bang-bang" control when the error was large and 

Linear Quadratic Regulator control when the error became small [9], an active steering 

controller using fuzzy logic [ 16], and a controller based on optimal control theory [6] . This 

automatic steering control system uses a traditional approach, the proportional-plus-integral-
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plus-derivative (PID) controller (see Figure 2.1 b). This particular control method feeds a 

proportion of the error, the derivative of the error, and the integral of the error to the plant. 

The derivative term improves transient response and the integral term improves steady state 

error [4], both essential in the precision control of an agricultural vehicle. The proportional 

term contributes to both to some extent. The variables Kp, Kl, and Kd represent the controller 

gains that are manipulated to obtain the desired transient response and steady state 

characteristics. This study uses Kp~, Kl~, Kd~, and KpY, KIY, KdY to represent the gains for the 

respective heading and lateral errors. 

For the automatic steering control model in this study, two PID controllers command the rear 

steer angle needed to maintain the vehicle path based on the lateral and heading error. The 

steer angle is arbitrarily chosen to be in units of degrees; units of radians would simply result 

in a different set of controller gain values. The commanded steer angle is assumed to be a 

step input, resulting in large initial state variable derivative terms. Appendix A discusses a 

comparison to a steering lag model, which provides a more realistic steering response. The 

desired path is the X-axis of the world coordinate system. This simplifies calculations and 

allows the lateral error to equal the vehicle world position, Y, and the heading error to equal 

the heading angle, ~, as defined by the world coordinate system shown in Figure 2.2. Eqn. 

2.1 shows the controller command as the linear combination of Y and ~. The commanded 

steer angle for a positive lateral error is positive for a rear wheel steer vehicle and negative 

for a front wheel steer configuration. In other words, the commanded steer angle is towards 

the desired path for a front steer vehicle and away from the desired path for a rear steer 

vehicle. There is no saturation for the steer angle in order to maintain linearity. 
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Figure 2.2 Earth fixed coordinate system showing vehicle orientation 

K%~ K iY CSR = Kp~t~+ i/r+Kd~s~r+KpY Y+ Y+KdYsY 
S S 

~R — 

~K s2 +K s+K; ~ dyr P~ ~ 

~ S ~ ~ 
~/ + 

~K s2 +K s+K. ~ dY pY ~Y 

S 
Y (2.1) 

2.2.2 Tire Model 

Previous studies [8, 9, 19] have used a kinematic model, which assumes the velocity of each 

fire is in the direction it faces. In practice, however, there is a slip angle, a (see Figure 2.2), 
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defined as the angle between the direction of tire travel and the direction of tire heading [ 1 ]. 

In other words, the tire velocity is not in the direction the tire faces. Introducing the slip 

angle increases the complexity of the model and requires additional vehicle parameters. A 

basic vector relationship results in the expressions for the slip angles, 

a 
— v+ar ~ 

f u f 

v—b~
GZ'R = 

u ~R 

(2.2a) 

(2.2b) 

The difference in heading and travel direction causes the region of the tire in contact with the 

ground, so-called the contact patch, to deflect and generate a force along the y-axis, termed 

the lateral force, Fy. The lateral force builds as the tire rolls, thus considerable sideslip lag 

could exist for low speeds [20] . To maintain simplicity, this model assumes no lag in lateral 

force buildup. The relationship between the slip angle and lateral force is determined 

experimentally and is shown in a carpet plot, such as the example in Figure 2.3. 

1 

fl0 

0 
Figure 2.3 Example of carpet plot showing lateral force due to slip angle [ 1 p3 51 
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The slope of the curve at zero slip angle is known as the cornering stiffness, Ca. The 

cornering stiffness is an essential parameter in regards to the behavior of the vehicle. Eqns. 

2.3a and 2.3b show the relationship between the cornering stiffness and the lateral forces. A 

negative sign is added to maintain SAE convention [ 1 ], which calls for a negative slip angle 

to result in a positive lateral force. 

F y f = —C~ ~z f

FyR - -C aR a R 

(2.3 a) 

(2.3b) 

Cornering stiffness data for on-road tires is well documented; however, lateral forces and slip 

for off-road vehicles are greatly affected by the nature of the soil [ 10], making it difficult to 

obtain cornering data for agricultural tires. In fact, fire companies do not collect and 

maintain cornering data for off-road tires, which has led to much research regarding methods 

to determine the lateral forces and related cornering stiffness values. Hun and Kim [ 16] 

looked at estimating the fire forces by relating the lateral forces to vehicle roll. Feng et al., 

[ 13, 14] used a series of field tests to obtain the cornering stiffness of a certain tractor fire 

combination. Metz, [ 10], presented data for the cornering coefficient of off-road tires for 

various ground conditions and summarized the range to be 0.03 to 0.09 deg 1. Eqn. 2.4 [ 10] 

defines the cornering coefficient, c~, as the ratio of cornering stiffness per normal load, or Wf

and WR respectively. The variable z denotes front or rear position. This relationship is used 

to find the cornering stiffness values Caf and CaR• 

Ca~ 
` W, 

Chapter 4 examines the effect on system response of fire parameters exhibiting cornering 

coefficients in the range presented by Metz. 
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2.2.3 Vehicle Dynamics 

The vehicle dynamics in this study derives from a linear yaw-plane bicycle model (see Figure 

2.4). The model assumes no motion and acceleration along the z-axis, the axis normal to the 

ground, and eliminates roll and pitch. The model also does not consider steering lag or fire 

slip lag. It lumps all wheels into one for each axle; thus, the front and rear cornering stiffness 

is the sum of the stiffness values for each fire on the axle. 

~ ~~~~~ r 
~~~ ~~`~~ 

Figure 2.4 Free body diagram of bicycle model and side slope force 
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The longitudinal velocity, u, is the along the vehicle x-axis and the lateral velocity, v, is along 

the vehicle y-axis. In order t0 maintain linearity, this model assumes a constant forward 

Ve OClty. 

As indicated by Figure 2.4, the sideslip angle, ~3, is the angle between the vehicle x-axis and 

the direction of travel of the mass center [ 1 ]. Using small angle assumptions to preserve 

linearity results in the expression 

,6 =tan-' ~v~ v 

~u~ u 
(2.$) 

One of the main interests in this study is to consider the effects of a sloped terrain on the 

automatic guidance control system. The right hand diagram in Figure 2.4 shows how the 

model incorporates the slope into the governing equations. Downhill slope is to the right of 

the vehicle, or along the positive y-axis. The component Of the vehicle weight in the y-

direction acts as an external force at the CG. 

F ex1 = W sin(8) (2.6) .v~ 

A sum of the moments about the CG results in the first equation of motion shown below. 

The second equation of motion is the result of a sum of the forces in the y-direction. Chapter 

3 defines the constants al_4 and bl_4. 

v +a, v + a2r = a38f + a48 R + ~  sin~B~ (2.7) 

r+bl v+bZr =b38j +baBR (2.8) 
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The vehicle states of interest for the automatic steering control are Y and yr. They are 

functions of the other state variables, r and v. Relating the yaw angle and vehicle velocities 

results in the derivative of Y 

Y = u sin~yr~+ v cos~yr~ (2.9a) 

which for small angles is reduced to 

Y=u~r+v 

The yaw angle is given by 

(2.9b) 

yr = r (2.10) 

2.2.4 Overall system model 

This study analyzes automatic steering control system in three ways, each of which confirms 

the calculations of the other models. A MATLAB°  written time domain state representation 

uses a higher order Runge-Kutta method to numerically integrate the state variables. The 

controller commands the steer angle as described section 2.2.1 by a separate controller 

function called in the numerical integration code. The MATLAB°  version of the model 

allows initial conditions of both Y and ~ and allows non-linearities of state equations and 

controller steer angle saturation to be easily introduced and examined. Manipulating Egns. 

2.7 through 2.10 gives the resulting system, or plant, in matrix form. 

v 

Y 

— b2 — bl 0 0 
—a2 —al 0 0 

1 0 0 0 
0 1 u 0 

v 

Y 

+ 

b 3 U4 

a3 a4

0 0 

0 
W 
'M 
0 

0 0 0 

^~f 
~R 

8 
(2.11) 
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Y 
Y, desired PID,Y 

Psi, desired 

Figure 2.5 Simulinkv block diagram of plant and controller before simplification 

A Simulinkv block diagram representing the system in the Laplace domain is setup using the 

same state equations (see Fig. 2.5). A block diagram representation allows the input signal to 

be easily followed through the system to the output. The third representation uses block 

diagram algebra to reduce the system to a single transfer function. The closed-loop system 

roots are found using the denominator of the transfer function as are the generalized root 

locus for each controller gain. Generalized root locus analysis is a useful tool because it 

enables graphical inspection of the controller response characteristics for different gain 

values. The next chapter contains the details of the entire system model, including steady 

state characteristics, transfer function derivation, and expressions for the constants used in 

this chapter. 
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CHAPTER 3. MODEL DEVELOPMENT 

3.1 Derivation of vehicle dynamics model 

The following subsections contain brief derivations of the final equations. The step-by-step 

derivations can be found in Appendix B. The free body diagram of the vehicle presented in 

Chapter 2 is shown again here as Figure 3.1. 

4 

~ ~~~,~ 
~~ ~`~~~~ 

Figure 3.1 Free body diagram of bicycle model and side slope force 
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To maintain the linearity of the model, small steer approximations are used for determining 

the contribution of lateral forces. Summing the forces in the y-direction gives the following 

relationship. 

Fy f  + FyR + Fy,exr = ay (3.1) 

The ay term includes the derivative of the lateral velocity (v), one of the state variables. This 

is derived by looking at the velocity vector of the entire vehicle, V,, [ 11 ] . 

~~ ~► ~ 

~ -► 

Differentiate Vv to get the acceleration vector A ,which consists of ax and ay. 

Additionally, 

-- du -: dv -- di dj A = a + j +u +v 
dt dt dt dt 

y 

di -~ -- --
=~kxi =~j 

dt 
-~ 

d' ~=~kx~=—r~i 
dt ~ 

therefore, the following equations give us the formula for ay, using dot notation. 

(3.3) 

A = ~ic — vr~a + (v + ur~ j (3.4) 

ay = v+ur (3.5) 

Substituting the expressions for Fyf, FyR, and Fy,exr into Eqn. 3.1 and rearranging gives, 

—C a —CaRa R +Wsin~B)=My+Mug (3.6) ~ f 

Substituting for af , and aR and collecting like terms results in Eqn. 3.7. 

~  C~ C aR  \ ~ C~ a C b ~ 
My + + v + Mu + aR  ~ = C~~f +CaR~R  + We (3.7) 

~ u u ~ ~ u u ~ 
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Further algebraic manipulation results in Eqn. 3..8, providing the first state equation as 

presented earlier in Chapter 2, 

where, 

W v +al v + a2 ~ = a3~f + a4~R + 8 
M 

C~ + CaR ai = 
Mu 

Mug + C~a — CaRb 
a2 = 

C~ 
a3 = 

M 

a4 = c aR

M 

Mu 

(3.8) 

(3.8a) 

The second state equation is derived by initially summing the moments about the CG, 

resulting in 

Fyf a — FyRb =1r (3.9) 

The yaw moment of inertia, I, is approximated using the widely accepted formula [11, 12], 

where M is the mass of the vehicle and L is the wheel base. 

I  _ MLz 
4 

(3.10) 

Substituting for values of lateral forces, the second governing equation of motion becomes 

I~ + 
~C a2+CaRb2 

u 
~+ 

~C~a—CaRb~

~ u ~ 
V= C a  f  a~ f— C aR b  ~R (3.11) 
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Or, rearranging, 

where, 

~' +b1V+b2 Y' = b3~f +b4~R 

C~ a — CaR b 
bl = 

lu 

C~ a 2 + CcrR b 2
b2 = 

lu 

C~a 
b3 = I 

b4 = I 
C aR 

(3.12) 

(3.12a) 

The remaining two state equations and overall system matrix representation are repeated here 

or continuity. 

Y=u~+v 

ter = ~ 

v 

_— b2 — 
bl 

0 0^ 

— a2 — al 0 0 
1 0 0 0 
0 1 u 0 

v 

Y 

b3 b4

a3 a4

0 0 

0 
W 
M 
0 

~ f

~ R

8 

(3.13) 

(3.14) 

(3.15) 
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3.2 Roots and Stability of System 

Stability is a critical component of vehicle design and operation. This section discusses the 

stability of the vehicle alone. The stability of the controlled vehicle system is discussed in 

later sections and chapters. 

To solve for the roots of the system, the right hand side of Eqns. 3.8 and 3.12 are set to zero 

and the equations are put in the Laplace domain yielding, 

~s+a,~V+a2R=0 (3.16) 

(s+bz ~R+b,V =0 (3.17) 

Solving Eqn. 3.17 for R, substituting for R in Eqn. 3.16 gives, 

~s+a1~V —a2 V = 0 (3.18) 

Now, dividing both sides by V, multiplying by (s + b2) and collecting terms of s results in the 

characteristic equation 

s2 +~a, +bZ ~s+~a,b2 —a2b,~= 0 (3.19) 

Using the quadratic formula, the roots of the characteristic equation become 

S _ —~a, +bZ~±11~ai +bz~2 —4~a,b2 —a2b~~ _  2 (3.20) 

System stability exists only for negative real roots, either two real values or complex 

conjugate pairs. The real values for complex roots are always negative since 

a, + b2 = 
~ C + CaR C a t+ CaR 

b 2~ 

`~ +  `~ > 0 (3.21) 
~ Mu Iu J 
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For two real roots, instability occurs when 

~a, + bZ ~ < ~~a, + b2 ~2 — 4~a,b2 — a2 b,~ (3.22) 

After some substitution for constants and algebraic manipulation, Eqn. 3.22 becomes 

Ku 2 1+ <0 
Lg 

Ku 2 <-1 
Lg 

where K is the understeer gradient defined as 

(3.23a) 

(3.23b) 

K = Wf —  WR (3.24) 
C af C aR 

Eqn. 3.23b occurs when K < 0 since all other variables are positive. In that case, the system 

is unstable when 

— Lg K<  2
u 

This happens when u is above the so-called critical speed 

u crit 
Lg 

K 

(3.25) 

(3.26) 

In summary, the vehicle is stable for a positive understeer gradient; however, for K < 0, so-

called oversteer, the vehicle is unstable when u > writ. For on-road vehicles, K is always 

positive and there is no critical speed; however, for off-road vehicles, such as agricultural 

equipment, a typical K and related critical speed are difficult to pinpoint because of the 

difference in tires, weight, and CG positions. Chapter 4 shows simulation for a wide range of 

K values to demonstrate the robust capabilities of the control system. 
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3.3 Steady state solutflons 

The solutions to the equations of motion at steady state are interesting to examine because 

they offer a quick insight to the final vehicle orientation and steer angle position by 

calculating the steady state yaw rate (rss), sideslip (~3ss), and steer angle, (~) to follow a given 

path. At steady state, the derivative terms of Egns. 3.8 and 3.12 go to zero and the system 

can be defined in matrix form by Eqn. 3.28. 

al a2

bl b2

W a3~f +a4~R + 8 
M 

b3~f +b4~R
(3.28) 

Using Cramer's rule to solve for ASS and substituting values in for the constants gives 

[(~f - ~,z J+Kai 
~s.s = Ku 2

1+ 

(3.29) 

Lg 

The resulting steady state value agrees with the literature [ 1 ] when the side slope, B, is zero. 

For a curved path, 

~ 1 

u R 
(3.30) 

where R is the radius of the steady state turn. Substituting this relationship into the steady 

state yaw rate (Eqn. 3 29) and rearranging gives the steady state steer equation 

L 8f —8R = R +K~aY —9~ 

where ay is the lateral acceleration in g's defined by 

~ 2 R u 2
a y = _ 

g Rg 

(3.31) 

(3.32) 
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Note that tracking a straight line requires R to equal infinity and ay to equal zero. This yields 

This is a very important result, as it shows that kinematic analysis, which requires 

~ f  — ~R = o to track a straight line, is not sufficient for a sloped terrain. In the case of a 

rear steer vehicle such as the combine, kinematic analysis concludes the steady state steer 

angle is zero when tracking a straight line on a hill, whereas Eqn. 3.33 clearly shows that 

with the inclusion of the side slope forces, 

~R = KB (3.34) 

Another key steady state characteristic to examine is the steady state sideslip angle, which 

shows the final vehicle orientation. From the definition of sideslip, if ,lass ~ 0 ,then the 

vehicle heading is not pointed along the desired navigation path. The desired path in this 

study is the X-axis; therefore, in this case 

ass = —~ss (3.35) 

Steady state vehicle orientation is important in agricultural applications. Figure 3.2 shows 

two combine orientations: a combine tracking a straight line with no sideslip and a combine 

tracking a line with steady state sideslip. The so-called header track, Th, determines the 

width of the harvesting path. In the presence of sideslip, the effective header track decreases 

while the overall path width increases. Since the header is no longer properly aligned with 

the crop rows, it may potentially damage the crop or be unable to harvest correctly. This will 

occur when the sideslip is large and the outside edges of the header or the vehicle tires run 

over the crop. 
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~~~i~~~ ve1 ~~~ 

~~ 

~~'s31`~ 

~. 

Figure 3.2 Combine orientation tracking line with and without steady state sideslip 

The sideslip is found by determining steady state lateral velocity and then applying Eqn. 2.5. 

To find the steady state when tracking a straight line, begin by setting ass to zero in Eqn. 3.28. 

Solving for steady state lateral sideslip in this manner results in 

and 

ass —a3 sf+ a4 sn+ W/M B 
a~ a~ al

~ss = 

C'~ C~ W ~f + ~R + 8 
C'~ + C aR C'~ -{- CcrR C~ -~- CaR 

/~ 
_ b3 b4

/`' ss — ~ f + ~R bl b, 

C~a CaR b 
~ss — ~ f ~R C~ a —CaR b C~ a —CaR b 

(3.36) 

(3.37) 
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Note that Eqn. 3.3 7 is not an appropriate expression when K = 0 because the denominator of 

both the ~f  and ~R terms goes to zero. 

To demonstrate the value of this steady state equation, consider the specific case of the rear 

steer combine tracking a straight line on a side slope. Setting ~f  to zero and substituting the 

resulting expression for dR from Eqn. 3.34 gives 

_ ~C K+W~ aR  8 (3.3 8) ~S.S 
~ C a f  + C aR ~ 

With a little more algebraic manipulation, this becomes 

Wf
ass = 8 

C~ 

or, using the definition of the cornering coefficient, 

ass = 
1 

cif 

(3.39) 

8 (3.40) 

Note that units for all variables must be in terms of radians. The variable cif represents the 

cornering coefficient as the sum of both left and right front tires. The importance of this 

steady state sideslip and side slope relationship is that given a sloped terrain, the vehicle will 

not face straight down the desired path. Some sideslip must exist in the presence of the slope 

and the amount present is solely determined by the fire parameters and side slope angle. A 

typical expected range for ass would be between 0 and 4 degrees for slopes up to 10% and cif

values in the Metz range. These results show the steady state solutions for steer angle and 

sideslip are independent of the controller; thus, controllers could be swapped to obtain 

different transient responses, but the steady state values will remain the same. 
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3.4 System Transfer Functions 

3.4.1 Derivation using block diagrams 

An advantage of using block diagrams is that they can be easily manipulated to create a 

simpler system representation. This leads to the formation of a transfer function, which is a 

useful tool to look at system characteristics and response to an input. Many steps are needed 

in order to arrive at the final transfer function and this section focuses on the major 

development. A step by step reduction process is shown in Appendix B. Figure 3.3 

redisplays the general block diagram representation of the entire system shown in Figure 2.5. 

Note that only the rear steer angle feeds into the vehicle dynamics for the specific case of the 

combine. 

Y 

Figure 3.3 Simulinkv block diagram representation before simplification 
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Further system reduction requires all state variables to be related to the input. Eqns. 3.41 and 

3.42 show the relationship between r and v obtained by redefining the state equations (Egns. 

3.8 and 3.12) in the Laplace domain and solving for R and V. 

a a a W 

V= 
~s+2a,~R+ ~s+3a,~s1 + ~s+a,~~R+ ~s+a,~e

b b b 

R (s +~b2 ~ V + (s +3b2 ~ Sf  + (s +4b,~ SR 

Substituting the expression for V into R and redrawing the diagram to reflect this change 

results in the new system configuration shown in Figure 3.4. 

deltaR 

theta 

D2 R 

c2 = (a 1 *b4 - a4*b 1) / b4 

T► 

deg to rad 

c2 

s+a 1 

PID 

G5 

G7 

c1 ~ b4 r 1 

s+a1 s+b2 s 

G1 G2 G4 

a2 

W/M 

B/A W/M 

a4 

A 

PID  

G8 

s 
G4 

Figure 3.4 Overall vehicle steering control system block diagram 

Y 
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The rear steer summing junction can be eliminated by rearranging output signal to feed 

through to other summing junctions in the diagram. Likewise, the summing junction to the 

left of block G6 can be eliminated. Using the labels underneath the blocks (G1 through G8, 

A, B, B/A) and the constants cl and c2 shown in Figure 3.4, the diagram is reconfigured in 

pure symbolic form with r and v incorporated into the overall system as functions of the input 

Y and the output 8 (see Figure 3.5). Note the D2R (degrees to radians) conversion block has 

been lumped into blocks GS and G8. 

G4 

Y 

G8 

G8 

Figure 3.5 System redrawn with state variables as functions of the output and input 
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theta AG6-G G4 / (1 -G4 G6 G8) 

G G7 G8 / G1 

Y 

Figure 3.6 Feedback loop shown symbolically for Y/ B 

A series of block diagram algebra operations, which are shown in their entirety in the 

Appendix, leads to the simple feedback loop shown in Figure 3.6. Reducing the feedback 

loop to a single transfer function gives the final input/output relationship shown in two forms 

in Eqn. 3.43 and 3.45. 

Y  A G1 G4 G6 — GG1 G4 
8 Gl — Gl G4 G6 Gg — GG4 G, Gg

where 

G= Gl G2 G4 u — Gl G2 G4 GS G6 — BGl G2 G6 
B 1— Gl G2 — — G2 G4 GS G, A 

(3.43) 

(3.44) 

Many symbolic variables are used to maintain the readability of the equations. The 

complexity of combining all variables is left to the computer simulation. The next chapter 

shows the numeric representation of the final system with substituted values for the vehicle 

and controller parameters. 



www.manaraa.com

28 

Replacing G1.8 with their respective transfer functions and simplifying the numerator and 

denominator results in 

y _ g~s4 +NN3s3 +NNZSZ +NN,s+NNo ~ 
8 s6 +DD6s5 +DDSs4 +DD4s3 +DD3s2 +DD2s+DDl

where, 

NN3 = Kd~ m l + Z1 

NN2 — KPH ml + K dyr Z2 + Z3 

NNi — K P~V Z2 + K %~ ml + Z4 

NNo = K;~z2

DD 6 = K dyr ml + KdY m2 + m3

DD S = Kd~ m4 + Kp~ mi + KpY m2 + K dYmS + m6 

DD4 = K pug m4 + K%v~ ml + Kd~ m, + K;Y m2 + Kam, mg + KpY ms + m9 

DD3 = K;w m4 + Kp~ m~ + KdY ml o + KpY ms + K iY ms 

DD2 = K;~ m~ + KpY ml o + K;Y ms 

DDi = K;Y ml o 

(3.45) 

(3.45a) 

(3.45b) 

and the constants ml_10 and zl_4 are constants containing al_4 and bl_4 defined in Section 3.1 by 

Eqn. 3.8a and 3.12a. The variable x represents the degrees to radians conversion for ~R. 

zi = al + b2
Z2 = —xal b4
z3 = al b2 — bl u 
z4 = —bl ual

(3.45c) 
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mi = —xb4
m2 = -xa 4

m3 = gal +bz 
m4 = xa4b1 — 2xal b4
yyls = —xal a4 

— xa4 b2 — xb4 u + xa2 b4

m6 = 2a1b2 — a2 b1 + al 

m, = xal a4 bi — xai b4

mg = —xal a4 b2 + xa4 bl u — 2xa1 b4 u + xal a2 b4
2 m9 = al b2 — al a2 b, 

mlo = xala4b,u — xal b4 u 

(3.45d) 

This final transfer function gives the lateral error of the steering control system when applied 

to a step input of slope assuming no initial conditions of Y or fir. Overall system response 

requires the combination of an impulse response to initial condition and a step response to 

the sloped terrain. For this study, only the response to an initial lateral error, Yo, was derived. 

Adding the initial lateral error is a simple modification of the final transfer function. The 

input now becomes Yo and B goes to zero. The initial condition is added to the state equation 

for Y (Eqn. 3.13) as shown by taking the Laplace transform of Eqn. 3.13 and modifying the 

system block diagram in Figure 3.3 to represent this change. Eqn. 3.46 and Figure 3.7 

demonstrate these changes. 

Y= 1 ~uty+v+Yo ~ 
s 

(3.46) 
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YO 

G2 G4 

Y 

G 1 B/A 

G7 G8 

G8 

Figure 3.7 System block diagram for initial lateral error 

This system representation reduces to a very similar final feedback loop as shown in Figure 

3.6, with an input of Yo rather than 8(AG6 — G) . The ultimate result is also very similar; only 

the numerator of the final transfer function differs, as shown below. 

Y 
Yo

where 

SS 
+N4S4 +N3S3 +N'SZ 

+N1S+NO 
s 6 + DD6 s S +DDSs 4 + DD4 s 3 + DD3 s' + DD2 s + DDl

N4 = Kdy,ml +m3 
N3 K py, ml + Kdy, m4 + m6

N2 Kpy,m4 + K;y,m l + 

N l K pyi m 7 + K iy~ m 4 

NO - Kiyi m 7 

(3.47) 

Key, m, + m9 (3.47a) 
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3.4.2 Generalized root locus of controller gains 

The concept of generalized root locus isolates one particular system parameter and examines 

the closed-loop effect on the system as the parameter changes [4] . The objective is to factor 

out the desired parameter and rearrange the denominator to resemble an open-loop transfer 

function form. with the open-loop form, the root locus of the desired parameter can be 

drawn and the system response to a change in this parameter can be observed. The following 

equations present the generalized open-loop transfer functions (TKZZ) for each controller gain, 

where the subscript zz represents the type of gain and the associated error. The root locus for 

each gain is drawn from these equations. Note that since the denominator of Eqn. 3.47 is the 

same as Eqn. 3.45, the generalized root locus for the controller gains will be the same for 

both input/output relationships; i.e., the same gains will result in the same overall transient 

response. 

TK — 
Kp~ m,s4 + m4s3 + mss 

P~ S 6 + DD6S S + (DD S — K ml~,s 4 + (DD4 — K m4 3 + (DD3 — K m., ~s 2 +DD2s + DD, 
\ P~ P~ P~ 

TK;~ — 
K;w m,s3 + m4s2 + m,s 

,~ 

s 6 + DD6 s S +DDSs 4 +DD4 — K;~ m, 3 +DD3 — K;w m4 2 + DD2 — K;y, m, s + DD, 

K~, (mis5 + m4s4 + m~s3
TK~v, - 6 - S - 4 + - 3 + 2 + + s +DD6 K~v, m, +DDS K~,,~ m4 DD4 K~~~ m, DD3 s DD2s DD, 

(3.48) 

(3.49) 

(3.50) 
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TKpY — 
KpY m2s4 + m5s3 + mgs2 + m,os 

s 6 + DD6 s 5 + DD S — Kpr m2 
4 

+ DD4 — K pr m5 3 + DD S — K pr m8 2 + DD2 — K pr m, o + DDl

—  K iY m2s3 + m5s  2 + m8 S̀ + m 10 TK;Y 
6 + 5 + 4 + — 3 + DD —K. m 1s 2 + DD —K. m iss DD6s DDSs (DD4 K;Y m2 )S ( 3 ~Y 5 J C 2 ~Y 8 

TKdr — 

(3.51) 

(3.52) 

Kdr 
mes s + m5s4 + mgs3 + mios 2 

s 6 + CDD6 — Kar m2 )s 5 + CDDs — Kdr mss 
4 

+ CDD4 — Kdr m8~s 3 + CDD3 — Kdr m, o~s 
2 + DD2 s + DD, 

(3.53) 



www.manaraa.com

33 

CHAPTER 4. SIMULATION RESULTS AND DISCUSSION 

4.1 Introduction 

Each of the three of system representations described in Section 2.2.4 could interchangeably 

be used to simulate the system and achieve comparable results. This chapter focuses on the 

use of the transfer function and MATLAB°  numerical integration models to analyze the 

system. Appendix A provides a brief discussion regarding comparisons of results with the 

Simulink°  model. The chapter is broken into several sections and subsections describing the 

use of the models to design the controller, analyze the response to typical values of combine 

vehicle parameters, and compare the response between uphill and downhill initial conditions. 

The simulations show the response of a combine moving at a constant forward velocity of 10 

mph subjected to a five degree slope. The desired path is a straight line track directly across 

the slope. The combine has an initial positive lateral error of 10 feet downhill from the track 

and no initial heading error. Table 4.1 defines the values for the base vehicle parameters 

used to design the controller and compare simulations. The forward speed represents a 

typical harvest speed. Vehicle dimensions and weight are average values for the John Deere 

Single-Tine Separation (STS combines. The cornering stiffness values of the tires are 

approximate and are based on conditions explained in Section 2.2.2. John Deere steering 

controller specifications state the lateral error must be within 40% of total vehicle header 

track width for the system to engage. A 10 foot initial lateral error reflects this specification. 

Unless otherwise stated, all simulations use the baseline parameters given in Table 4.1. 
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Table 4.1 Vehicle and simulation baseline parameters 

Parameter Value and units 
a 2.3 ft
b 9.2 ft

~ ~ 0.06 for front tires, 0.06 for rear tires (deg-l ) 

Caf 1632 lbs/deg 
C~ 408 lbs/deg 

I 34,911 slugs-ft' 
L 11.5 ft
M 1055.9 slugs 
u 10 mph 
W 34,000 lbs including header, empty grain tank 
W f  27,200 lbs 
Wx 6,800 lbs 
Yo 10 ft
8 5 degrees, 8.7% grade 

4.2 Controller design 

This study uses the transfer function and the associated generalized root loci for the 

controller gains to design the system controller. The root locus is a plot of the collection of 

possible roots for the system shown on the complex plane. These plots show how the 

stability and response of the system changes as the value of the gain changes. The controller 

is designed by selecting gain values determined from the root locus to yield desirable system 

behavior. For a navigation guidance system, little to no overshoot and fast settling time are 

transient response characteristics of importance. Settling time is the time required for the 

transient oscillations to reach and stay within 2% of the steady state value [4] . The 

MATLAB Control Systems Toolbox includes an interactive root locus plotter that provides 

information about damping, percent overshoot, and gain values for each root location. This 
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tool helps determine gains that yield stable and desirable system behavior. The design 

process requires multiple runs, as parameter modifications change the individual generalized 

root locus plots. 

The final system transfer functions from Egns. 3.45 and 3.47 show that in order to have zero 

steady state lateral error, the integral heading gain must be set to zero. At steady state, the s 

terms go to zero and the input output relationships become 

y _ K; ~ z2 
B K;Y mlo 

and 

y _ K;W m~ 

Yo KrY mlo 

If K;~ is not equal to zero, Y = P 8 , where P is some non-zero constant. This would seem to 

represent a tradeoff between obtaining zero lateral error and zero steady state error; however, 

the steady state solutions derived in Chapter 2 show that steady state sideslip, thus steady 

state heading does not depend on the controller (see Egns. 3.3 5 and 3.40). 

In summary, no controller will compensate for the steady state heading error on sloped 

terrain for a rear steer vehicle, as the error is related only to the slope angle, the tire cornering 

stiffness, and load on the tire. Zero steady state heading error would require a four wheel 

steer vehicle. The ability to control all wheels would result in lateral forces that would create 

moments about the CG to straighten the vehicle orientation and is a topic for another study. 

The simulations in this study focus on obtaining zero steady state off-track error and then 
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observing the steady state heading error. Results show that steady state heading error is 

minimal for typical vehicle parameters and slope conditions. 

The initial simulation sets KID to zero and all controller gain values to one. These values are 

arbitrarily selected to serve as a baseline for design. Examination of the root loci shows that 

the system is unstable for this combination. The interactive root locus plots help find gains 

that lead to stable behavior and desirable transient response. Each individual generalized 

root locus shows the response to changes in only the selected gain. All other controller and 

vehicle parameters are held constant and are equal to the value set at the beginning of the 

simulation. For example, in the initial simulation, the generalized root locus plot for KpY

shows the system response as KpY ranges from zero to infinity while K;,~ equals zero, all other 

gains equal one, and vehicle parameters remain constant. Multiple runs and root loci 

observations lead to a set of optimized gain values. 

Table 4.2 shows a set of optimized controller gain values obtained from the root locus 

analysis. Figures 4.1 and 4.2 show the final generalized root locus for the controller gain and 

Figure 4.5 shows the final overall vehicle response to the parameters in Table 4.1. 

Table 4.2 Optimized controller gain values 

Heading Gains Lateral Gains 
Kp ,~= 
K 1 ,~= 

K d ~~ _ 

74.00 KpY = 3.70 
0.00 K lY = 0.05 
0.00 K dY = 1.30 
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Figure 4.1 Final generalized root locus for heading error controller gains 
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Generalized Root Locus for KpOff 
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Figure 4.2 Final generalized root locus for lateral error controller gains 
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Overall system response: Y, ~,, ~R
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Figure 4.3 Final system response with initial downhill Y of 10 ft. on 5 deg slope 
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The final root locus plots show that while holding all other gains constant at the optimized 

values shown in Table 4.2, any gain value of Kp~ results in a stable system. The same is true 

for Kd~ as well. The plot for Kl~ shows that if an integral gain for heading is used, values 

greater than 644 would cause the system to be unstable. Likewise, system instability occurs 

for values of KpY greater than 18.7, KlY greater than 4.8, and KdY greater than 13.2. Keep in 

mind that this is true only if all other gains remain constant at the optimized values in Table 

4.2. Although the system is stable for the above mentioned range of each individual gain, 

transient response will vary significantly. 

The final controller design yields desirable navigation controller response. The settling time 

is just under S seconds with no overshoot and no steady state off-track error. The steady state 

heading error is -0.73 degrees. The sharp initial slope results from the assumed instantaneous 

steer angle as mentioned in Section 2.2.1 and shown in the bottom of Figure 4.3. The CG 

position rise above the initial condition is due to the fact that the vehicle is rear steer. 

When the result of the transfer function model is compared to the result from the numerical 

integration, there is a slight difference which is discussed in Appendix A, Section A.1. 

Moving forward, it is sufficient to say that the difference is related to software algorithms 

and not mathematical dissimilarities. Both models may be and are used in this study with 

confidence. 



www.manaraa.com

41 

4.3 Steady state equations comparison 

Section 3.3 derives the steady state solutions for yaw rate, lateral velocity, sideslip angle, and 

steer angle. One of the claims is that these steady state equations would enable immediate 

analysis of the steady state orientation of the vehicle without any simulation. This section 

verifies that claim by comparing the steady state equation with the simulated response. 

Figure 4.4 plots the response of two key steady state variables of interest, sideslip and steer 

angle, with the steady state value calculated from Egns 3.34 and 3.40. The plot shows the 

steady state equations are effective predictors of the final vehicle orientation and steer angle. 

The steady state values are shown in Table 4.3 and indicate the vehicle has a small steady 

state sideslip angle. It is interesting to note that for constant cornering coefficients, the 

understeer gradient (~ goes to zero. This means no steady state steer angle. If the 

coefficients are not the same, the understeer gradient is non-zero, which results in steady 

state steer angle defined by Eqn. 3.3 3 . 

Table 4.3 Steady state values 

r SS = 0.00 deg/sec 

v SS = 0.19 ft/sec 

ASS = 0.73 deg 

bR,ss = 0.00 deg 
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Figure 4.4 Steady state response comparisons: (a) rear steer angle, (b) sideslip angle 
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4.4 System response to vehicle parameter changes 

Section 4.2 shows the controller is effective for the typical operating parameters given in 

Table 4.1. This section now looks at the system response to changes in some of those 

parameters. The vehicle speed can vary depending on field and crop conditions and operator 

preference. The CG position changes as alternate headers and platforms are attached or as 

the grain tank fills with harvested crop. Likewise, the weight of the vehicle changes as grain 

enters the tank. The largest John Deere STS combine has a grain tank capacity of 3 00 

bushels. At 56 — 601bs per bushel for corn, wheat, or beans, this results in an extra 18,000 

lbs, about twice the weight of a combine with an empty tank. The tires can be replaced in the 

front or rear, and wheels can be added to the front, thus resulting in different cornering 

stiffness values and corresponding lateral forces. The controlled system must remain stable 

through these changes or be redesigned to achieve stability for different target parameters. 

4.4.1 Effects of tire parameters 

As discussed in the overview of the tire model in Chapter 2, the cornering stiffness has 

significant effect on vehicle dynamics. Figure 4.7 shows the closed-loop system roots with 

different values of Caf and CaR determined by the cornering coefficient, c~. The plots are 

created by ranging one of the cornering coefficients from 0.00 to 0.20 deg-1 in increments of 

0.005, while holding the other coefficient constant at 0.06 deg-1. They are zoomed-in around 

the dominant roots and do not show some pairs further to the left on the negative real axis. 

The range gives cornering stiffness values of 0 — 5440 lbs/deg for each front tire and 0 — 

13 60 lbs/deg for each rear tire. The plots show that only for c~ values below approximately 

0.005 for the front and 0.01 for the rear does the system become unstable. The full range of 
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cornering coefficients suggested by Metz (c~ = 0.03 — 0.09 deg 1) results in a stable controlled 

system. 

System roots: Caf changes (using c~ ) 
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Figure 4.5 System roots for changes to Caf (a) and CaR (b) for c~ = 0.00 — 0.20 deg 1 
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Figure 4.8 shows the overall system response to the Metz range of cornering coefficients. 

The front cornering stiffness range is 816 — 2448 lbs/deg and the rear cornering stiffness 

range is 204 — 612 lbs/deg for each tire. The plots are created by holding one coefficient 

constant while varying the other. 
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For the most part, changes in fire parameters within the applicable range do not significantly 

affect the response. Examination of the steady state error after 10 seconds reveals a slight 

difference in the transient response, in particular the settling time. Steady state solutions for 

all runs do go to zero due to the integral gain, but only after time reaches upwards of 150+ 

seconds. The commanded steer angle at this time is around 0.7 degrees, which causes the 

response to be slow. The reason for this is because the system is not second order. This 

makes it difficult to predict the exact behavior because there may be contribution of several 

roots to the system response. 

The following subsections include parameter changes that include the effect of the cornering 

stiffness. For example, the CG position determines the weight of the vehicle on the front and 

rear wheels. If the cornering stiffness is constant throughout the entire range of CG positions, 

the responses are slightly different than if allowed to change according to Eqn. 2.4. This will 

become clear in the following sections and is interesting to examine for two main reasons: 1) 

it shows to what extent the cornering stiffness affects the vehicle transient response, and 2) it 

demonstrates that the controller maintains stability and gives desirable response 

characteristics regardless of subtle differences in fire parameters. Unless otherwise stated, 

the front and rear cornering stiffness values for the simulation runs are as given in Table 4.1. 

4.4.2 Changes in speed 

The simulation looks at a speed range between 0 and 3 0 mph. Typical field speeds are 

somewhere between 0 and 12 mph. Higher speeds are included in the simulation to observe 

how the roots move and to see when the vehicle becomes unstable. In Figure 4.7, the 
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movement of the closed-loop system roots as the speed changes shows that for field speeds, 

the controlled vehicle is always stable. The trend suggests that at a speed of approximately 

28 mph, the controlled system loses stability. This shows the controller is appropriate over 

the practical range of field speeds. In order to avoid any unstable speed, manufacturer 

specifications state the vehicle speed must be 12 mph or less to engage the controller [ 19] . 

The simulation shows that even in the event of a speed sensor malfunction, the controller can 

maintain vehicle stability. 

Figure 4.8 shows the lateral error system response for each speed. As expected, low speeds 

result in slow response and high speeds result in more oscillatory behavior. Close to the 

target speed of 10 mph, the response exhibits desired damping and settling time. At higher 

speeds, the transient response is less desirable, but the system maintains stability. The 

controller gains seem effective in the appropriate field or harvest speed range. 
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System Response: u changes (increasing from 7 mph) 
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Figure 4.8 System response for speed range of u = 1 — 25 mph 

4.4.3 Changes in CG position 

The center of gravity position on a combine, or any other piece of agricultural equipment, 

changes with the addition of implements, headers or platforms, and with the addition of 

harvested crop entering the machine. Figure 4.9 shows the closed-loop roots of the vehicle 

system as the CG moves from rear to front (0% of total weight on front, Wf, to 100% of total 

weight on front) for both constant values Caf and CaR and values that change based on Eqn. 

2.4. Results show that for constant values of cornering stiffness, CG locations near the rear 

are unstable. For values that change based on vertical load, only CG positions on the front 

and rear axles are unstable. This is because of positive real roots and dominant roots equal to 

zero. Overall, the results are satisfactory as the actual vehicle CG position would not 

realistically lie on one of the wheel axles. 
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System roots: CG position changes (% of Wf) 
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The system response for a realistic range of CG positions is given in Figure 4.10. The plot 

shows that CG positions further to the rear result in less damping, more overshoot, and an 

increase in yaw angle and lateral velocity. This correlates to an increase in yaw rate and 

lateral acceleration. As the CG position moves towards the front, damping increases and 

overshoot decreases, improving the transient response and reducing the lateral accelerations. 

This conclusion could be shown in additional plots, but can also be determined by observing 

the initial slope of the off track error curves. The derivative, or slope, of the off track 

position Y is a function of yaw and lateral velocity (see Eqn. 3.13). If the derivative of Y 

becomes large and does so quickly, the lateral velocity and/or yaw angle must also become 

large and have high accelerations. 

This plot shows the dependence of system response on Caf  and CaR values. Figure 4. l Oa 

shows as the CG moves towards the rear, the system begins to oscillate. This is because the 

rear lateral force generated using a constant CaR does not create a sufficient moment arm to 

result in a fast response; thus, the vehicle position overshoots and slowly damps to zero. 

Figure 4.1 Ob demonstrates that as cornering stiffness changes with load, damping is 

significantly increased and settling time is significantly decreased as the CG position moves 

rearward. 

It is important to note the effect speed has on the CG position change response. Figure 4.11 

shows the roots of the system at a speed of 20 mph. The vehicle becomes unstable as the CG 

position moves closer to the rear as speed increases for both constant and changing Caf  and 

CaR values. At 20 mph, the controller maintains stability for realistic CG position shifts. 
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System response: CG position changes (% of Wf) 
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System roots: CG position changes (% of Wf) 
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(a): constant Caf and CaR, (b) Caf and CaR calculated by Eqn. 2.4 
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4.4.4 Changes in vehicle weight 

A third parameter of interest is the change in vehicle weight according to conditions 

described in the introduction to his chapter. The following plots show the response of the 

system to changes in weight from harvested crop entering the grain tank. The percentage 

given is the percent of full tank. These results assume constant cornering stiffness values and 

shift the CG position to the rear as the tank fills. According to Deere technical specifications 

for the STS combines, the CG position moves at most 4% with a full grain tank. Figure 4.12 

shows the results, plotting the response to a percentage of the grain tank load. 
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Results show that the system response is stable for all conditions and is nearly identical for 

the entire range. If the CG continues to move, the response begins to become unstable as it 

approaches the rear axle. This situation exhibits similar res~~onse to Figure 4.10a for the CG 

positions towards the front. 

An interesting note to make, although not included in the pl~~ts, is the response of the system 

when using Eqn. 2.4 to calculate the cornering stiffness. Th.e responses differ slightly, but 

are virtually identical. If the CG position moves further rearward, the response looks similar 

to Figure 4.lOb. 

4.5 Effects of sloped terrain 

To fully complete the objective of this study, this section di;~cusses the effects of terrain slope. 

The slope is the input to the system and does not affect syst~~m roots. In terms of the transfer 

function, changing the slope modifies the system zeros, which affect the amplitude of the 

response and not the nature of the response [4] . Therefore, :in linear analysis, comparing 

different slopes is trivial, as a different slope value simply acts as a scalar. The interesting 

point to acknowledge from this study is the concept that the steady state sideslip and steer 

angles are a function of the slope (see Chapter 3, Section 3..3). The steady state sideslip and 

lateral velocity increase as the slope increases, but the contr~~ller always returns the vehicle to 

zero steady state lateral error for any grade of slope in linear analysis. 
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The previous sections all assumed an initial downhill lateral error of 10 feet. Figure 4.13 

shows the comparison with an initial uphill lateral error of the same amount. The trajectory 

response differs slightly, as expected. The difference is due to the direction of the side slope 

force that the weight of the vehicle creates. For a downhill error, the force leads away from 

the desired path. For an uphill error, the force leads towards the path. The sum of the forces 

for the uphill situation ultimately leads to smaller initial lateral velocity and sideslip, which 

causes the vehicle to move towards the path more quickly and overshoot by a small margin. 

This shows another subtle effect of the slope; there is some difference in response if the 

vehicle is uphill or downhill of the desired path when the steering controller engages. 
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Figure 4.13 Comparison of response to downhill and uphill initial lateral errors of 10 ft
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4.6 Additional comparisons and results 

Appendix A, Section A.2 discusses a brief comparison to an additional model not included in 

the main body of this study. The results of the comparison do not necessarily add additional 

insight to the vehicle model or design; they simply show the difference between the linear 

model discussed here and a linear model including steering lag effects. The steering lag 

model does not assume an instantaneous steer angle, but rather incorporates a first order lag 

to make the steer command more realistic. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

The vehicle dynamics and steering controller model presented in this thesis provide a viable 

initial design and analysis tool to develop an automatic steering control guidance system for a 

John Deere STS combine. Simulations show the final design successfully handles vehicle 

parameter changes and maintains a stable response for realistic values. 

The linear bicycle vehicle dynamics model uses lateral tire forces to govern the equations of 

motion. This is a key difference and advantage over the traditional kinematics model, as it 

creates the ability to model sloped terrain and observe the effects of parameter changes. One 

of the most interesting and conclusive observations from the results of the model is that 

steady state sideslip and steady state steer angle are independent of the controller and are 

functions of the slope of the terrain and the cornering coefficient of the tires. For a front 

steer only or a rear steer only vehicle, there will always exist anon-zero steady state sideslip. 

The model and simulation are setup to be adaptable for a wide range of vehicle 

configurations. It could be expanded to analyze front steer and four-wheel steer vehicles or 

study the effects of tire pressure, soil conditions, or dual or triple wheel configurations by 

adjusting the tire parameters. A variety of terrain definitions could also be applied by simply 

replacing the step input with a lookup table of terrain data collected for a specific field. 

A comparison to anon-linear model would demonstrate the significance and correctness of 

the linear assumptions. This would include no small angle approximations, anon-linear tire 
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model, and additional state variables, such as forward velocity, pitch, and roll. The effects of 

roll stability on sloped terrain would be interesting to examine. The addition of steering and 

fire lag would make the simulated vehicle more realistic. 

Field data from a real combine would validate the simulation by comparing measured and 

simulated results. Results from the field study would provide greater insight to the validity 

of the approximations and accuracy of the fire model. The fire parameters of the vehicle 

model could be adjusted based on the measured data to yield more accurate simulations. 

This model has also been used in a John Deere Immersive Combine Simulator, which was 

used for demonstration and training purposes at a large agricultural world trade show. 

Operators from around the world were able to gain exposure to navigation guidance systems 

and gain experience in automatically controlled vehicles. The project is ongoing and 

continues to be improved to meet the company needs. 
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APPENDIX A. MODEL COMPARISONS 

A.1 Discrepancies in the three types of models 

Two types of Simulink models are compared, one using the actual derivative and integral 

terms of the state variable as defined by the state equations, another using the software 

included PID controller block, which approximates an ideal derivative and integral Laplace 

transform. As seen in Figure A. l ,there are differences in the response; it is interesting to 

note that the MATLAB and Simulink models that used the actual derivative and integral 

terms match in response as do the transfer function and Simulink model that uses the PID 

controller block. The settling time and steady state response is virtually identical, which 

suggests that either model still yields the desired final output. 
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Upon further investigation, it was determined the reason for the discrepancies is because the 

MATLAB transfer function and the Simulink derivative block assume an initial derivative 

term of Yo / dt, which leads to a commanded steer angle of more than 1000 degrees. This is 

verified in Figure A.2, which shows the commanded steer angle with the modification made 

in the numerical integration code (referred to as MATLAB in plots). Because the model is 

linear, this unreasonable desired steer angle signal passes through the system and causes 

extremely high lateral forces, resulting in different transient response characteristics. 

This conclusion is again verified by altering the numerical integration code to assume the 

same initial derivative term mentioned above for the first time step of the simulation and 

running the simulation again, as shown in Figure A.3. In summary, the models differ only 

because the difference in derivative term approximation, not because of difference in system 

dynamics; therefore, both models are used to analyze the system with confidence. 
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A.2 Additional model comparisons 

A.2.1 Steering lag model 

Introducing a steering lag make the simulation more realistic, as a commanded steer angle of 

3 0 degrees cannot instantly be obtained. The MATLAB model was modified to include a 

first order lag by making b a state variable. The equation for the derivative of the steer angle 

is given in Eqn. A.1. 

~R — ~R,des ~R (A.1) 

where ~R is the actual steer angle, ~R,des is the commanded steer angle from the controller, and 

z is the time constant for the for the first order lag. A time constant of 10, resulting in a rise 

time of 0.1 seconds was arbitrarily selected. Introducing a lag to the model eliminates the 

large initial derivatives of lateral velocity and yaw. This reduces the acceleration terms and 

provides a more realistic response. Figure A.4 shows the comparison of Y, ~, and ~R between 

the steering lag compensated model and the uncompensated model for the same vehicle 

parameters used in Section 4.2. Figure A.5 shows r', v, /3, and ay in g s defined by Eqn. A.2. 

~v+ur~
ay — 

g 
~a.2~ 

Results show that a steering lag compensated system has slightly different transient response 

characteristics for the heading and lateral error response. The biggest important difference is 

the acceleration terms. The max ay in a non steering lag model is about 2.1 g's; a steering lag 

model only reaches 0.6 g's. Using a steering lag in the model allows the controller design to 

also account for operator comfort and vehicle structural integrity, both of which are 

compromised by high accelerations. 
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Overall system response: Y, ~,, ~R
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Yaw rate (r), Lateral velocity (v), Sideslip (R), and Lateral acceleration (ay) 
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APPENDIX B. DETAILED DERIVATIONS 

B.1 Free body diagram 

Figure B.1 Free body diagram of bicycle model and force due to sloped terrain 
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B.2 Equations of motion for r (yaw rate) and v (lateral velocity) 

Two of the state equations needed to define the system are found by suimning the forces in 

the y-direction and summing the moments about the center of gravity (CG) position. The 

acceleration in the y-direction is given by Eqn. 3.5 in the body of the thesis. 

B.2.1 Derivation of yaw rate 

Fy = Ma y

F +F R +F,ex1 =M(v+ur) yf y y 

—C cx —CaRa R +W sin(8)= My+Mur~ ~ f 
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My + 

v+ar~ ~ ' 
f ~ u ~ 

/ C►~ 
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 + 
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u u ~ 
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C,~(v—br _SR \ +Wsin~9~=My+Mur 
~ u ~ 

~ C~ a 
C crR b Mu + 

~ u u 
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C~ + C~ 
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Mu 
Mu g +Caf a C aR 

C~ 
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— C aR a4 —
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B.2.2 Derivation of lateral velocity 

Mcc = Ir 

Fy f  a — FyR b = I~' 

where 

— C~ ~v+a~ ~ ~v—b~ ~ ~ f  a —CaR   ~R b = Ir~ 
~ u ~ ~ u ~ 

~C a 2 +CaR b 2 ~ 
~ u ~ 

~+ 

~ +b 1 v + b2 ~ = b3 ~ f  + b4 ~ 

C~-a — CaRb bl = 
lu 

C~ a 2 +CaRb 
2 

b2 = 
Iu 

C~a 
b3 = I 

b4 = CaR b 

I 

C~a _CaRb ~ 

u 
v = C~ a ~ f  — CaR b ~R 

(B.3) 

(B.4) 
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B.3 Steady state solutions for r, v, b, and /3 

The steady state solutions for yaw rate and lateral velocity are found using Cramer's Rule 

applied to the matrix representation shown below in Eqn. B.S. Sideslip and steer angle 

steady state relationships are algebraic manipulations of r and v. 

al
bl

a2 v 

b2 ~ 
a38f + a48R + ~  sin~B~ 

b 38 f  +b 48 R

B.3.1 Steady state yaw rate 

Applying Cramer's Rule for r gives 

~s.s — 

~SS 

a~ a38f +a48R + ~  sin~B~ 

b, b3 (S f  -f- b4 ~R 

a, a2
b, b2

a, (I73CS f  -I- b 4lSR ~— b, /a38f + a48R + W  sin~8~ 
~ M ~ 

al b2 — a2 b1

Breaking Eqn. B.6 into numerator and denominator portion allows for easier simplification. 

First, look at the numerator. Eqn. B.7 can be broken into three parts: front steer, rear steer, 

and slope. 

Numerator

(B.$) 

~a~b3 — b~a3~~f + ~a~ba — b~aa — b, ~ sin~9~ 

(B.6) 

(B.~) 
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Front steep, ~~_

~a~b3 — b~as~= 
~Caf + CaR ~ Caf a ~Caf a — CaRb Caf. 
~ Mu ~ I 
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Rear steer, ~~ 
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Slope, B 
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Combine the parts from each steer angle and the external slope force (Egns. B.9, B.11, B.13), 

LC~CaR ~~S —cS~ 
/C~a—CaRb~ W  Sln~B~ 

MuI f  R ~ Iu ~ M 

Wf

WR

b 
L 
a 

L 

W 

W 

Substituting the relationships shown in Eqn. B.15, the numerator becomes 

L  ~aJ ~aR 

Mul ~~f — 8 R
~ L caf  WR - L caR W ~ .f 

~ MuI ~ 
sin~9~ 

1'[C'alCaR\~I —SR/ \C ~ W R —CaHWf/Slll(8)J 

MuI 

Now look at the denominator of Eqn. B.6. 

Denominator

~a,bZ — a2b,~= 
~C +CaR ~~C a2 +C R b of  of a '~ ~Mu 2 +C a —C b~~C a —C b~ of aR of aR 

~ Mu ~ ~ Iu J ~ Mu ~ ~ Iu ~ 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

C~ 2a2 + Caf C~b2 + C~.Ca~a 2 + CaR 2 b 2 — Mu 2C~a + Mu'Ca~b — Caf 2a 2 + Caf CaRab + C~.CaR ab — Ca~ 2b2

Mu 2I 

~a + b~2 C af C aR -I- 1~/IZl2 (CaRb —COQ'/ 

Mu 2I 

L' Ca f  CaR + Mu 2 CaRb — Caf~ a 
Mu 2I 

X8.1s~ 
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Next, combine numerator and denominator and simplify to obtain the final steady state 

solution for yaw rate, shown in Eqn. B .19. 

LLC aIC aRIS J — ~R1— \C alWR — CcrRWf ~Slll(8)J

MuI 
LZC~CaR + Mu2 ~CaRb — C~a~ 

Mu' I 

ZlL[C~C aRI~! — ~RI \C crl WR —CaRWf /Slll(8>J

L~ C~C~ + I~ZI Z (CaR b — C~CZ ) 

ZlL[C~L'aRISI — ~RI lCaIWR—CaRW1IS111(8)J 

L 

~ 1 ~ 
2 

L  Caf CaR 
1 

L2 C a f CaR ~ / 

~8 f — 8R ~— ~C~WR — CAW f ~  1  sin~8~ 
C~Can 

L 

Mu 2l +  2 CaR b — C~ a 
L Caf C aR 

(~f -st J-
~W W ~ 

R  _  f 

~ C aR C af ~ 

sin~e~ 

1+ 

L 

W  2
u ~ 

g b a 

L2 C~- C aR ~ 

~W W ~ 
.f R 

~ C af C aR ~ 

sin~B~ 

~~.s = 

u'  ~  W W  ~ 1+ f  _  R 
Lg ~ C a f  C aR / 

~~8f —Bn ~+Ksin~B~~ 

1 + Ku' 
Lg 

(B.19) 
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B.3.2 Steady state steer angle 

Rearranging the steady state yaw rate equation (see Eqn. B.19) and substituting the steady 

state relationship shown in Eqn. B.20 gives the steady state steer angle given by Eqn. B.21. 

r 1 

u R 

where u is velocity in the x-direction and R is the radius of turn, 

rL ~S f  — SR ~+ K sin~e~ 
u 1 + Ku Z 

Ku 2 ~ 
Lg ~ 

Lg 

_ ~8 f — 8R ~+ K sin~e~ 

z 
8 f  — 8 R = R + Ru K sin~8~ 

g 

8J — 8 R = R +Kay — K sin~9~ 

8 f — 8 R = R + Kay — sin~8~~ 

where ay is in g's. 

(B.2o) 

(B.21) 
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B.3.3 Steady state lateral velocity 

Applying Cramer's Rule to Eqn. B.5 for v yields 

a38f + a48R + ~  sin~B~ a2

b3 ~ f  + b4 ~R b2
v ss — a, a2

bl b2

bZ ~a38 f + a48R + ~  sin~9~ 
i 

v SS 

—a2~bssf +baSR~ 

ai b2 — a2 b 

Similar to steady state yaw rate, breaking Eqn. B.22 into numerator and denominator portion 

allows for easier simplification. The denominator will be the same as Eqn. B.18 and the 

numerator is broken into three parts. Eqn. B.15 is also used in the derivations. 

Numerator

~a3bZ — azb3l~Sf + ~a4b2 — a2ba ~R + b2 ~ sin~9~ 

Front steer, ~~_

Caf ~aR ~bL J — Ca f Q'MZl 2

(a3bZ — azb3) — Mul 

Caf CaR 
~ Mu 2a~
bL 

~ CaR / 

Caf CaR 

MuI 

~ WR u 2L~
bL 

\ g C aR / 

MuI 

(B.22) 

(B.23) 

(s.24~ 

~B.2s~ 
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Reap steep, ~~ 

C af C aR ~aLJ+ CaabMuZ 
~a4b2 — a2b4 ~ — (B26) 

Mul 

C af C aR 

~ Mu 2 b  ~ aL + 
~ Caf / 
MuI 

~ W u 2 L~ C,a CaR aL +  f 
f 

~ gCaf / 

MuI 

Slope, 8 

W ~  Ca a 2+ C►aR b 
2~ W b  —  .f 

2 1Vl uI M ~ ~ 

W1z LaCaf~ + W f  LbCaf
MuI 

~8.2~> 

(B.28) 

~W W ~ 
Ca CaR  R  La +  f   Lb .f 

~ CaR Caf ~ _  (B.29) 
MuI 

Combine the parts from each steer angle and the slope force (Egns. B.25, B.27, B.29) 

~ WRu2L~
Caf CaR bL 

\ g C uR ~ 
U f +C af C aR 

~ W u'L~ ^ ~y~ W ~ . 
aL +  f  d R + C'a C aR 

R  La +  f   Lb sln(e) 
b C a 

f 
C a1Z C a

\ .f / ~ -f 

C af C aR 

MuI 

~~ W  u'L~ ~ W u'L~ ~W W \ 
bL —  R   ~ + aL +  f   ~R + R  La + f   Lb sin(8) .f 

~ ~ C aR g / ~ C af g ~ ~ C uR C af ~ J 
(B.30) 

MuI 
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Next, combine numerator and denominator from and simplify to obtain the final steady state 

solution for lateral velocity, shown in Eqn. B.28. 

u caf C aR 
~~ W  u 2 L~ ~ W u 2 L~

bL —  R   ~ + aL +  f    ~R + 
CaR g 

f 
Ca g ~~ l ~ f ~ 

/ ~ l 

CR La + ~ f  Lb sin~B~ 
~ of / / 

LZCaf C~ + g ~Wf LC~ —WRLCaf~ 

Multiplying by 

1 / L2Ca fC~ 
1 / L2Ca fC~ 

leads to the final steady state equation 

vss — 

i 
u 

~ b WR  u 2 ~ 

~ L CaR Lg / 
~f + 

~ 2 ~ a Wf u 
- -}- 

~L Caf Lg
/

C~R -~" /Wf b +  WR a l sin~9~\
~Caf L C~ L~ ~ 

Ku 2
1+ 

Lg 

(B.31) 

(B.32) 

B.3.4 Steady state sideslip angle 

The sideslip angle is defined by Eqn. 2.5, which is again shown here as Eqn. B.33. The 

simple relationship to v gives the steady state solution in Eqn. B.34. 

vss =tan = 
u ~~SS~ ass 

~b W  u 2 ~ --  R 

~ L C~ Lg J
ASS — 

Uf ~-

~ ~ 
a Wf u2
- -~ 

~ L Ca f  Lg J
~ R + 

~W b W  a~ f  - ~--  R  -
~ Ca f  L CaR L ~ 

sin~e~ 

Ku 2
1+ 

Lg 

(B.33) 

(B.34) 
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Comparison to Gillespie [1] shows that this derivation is correct. Gillespie shows that steady 

state,6 is given by 

2 

~3 = 57.3 R ~ r V R [1, p208] 
~g 

(B.35) 

where c is the distance from the rear to the CG (b), R is the radius of turn, and V is the 

forward speed (u). The 57.3 simply accounts for radians to degrees conversion. Setting 8R

and 8 to zero in Eqn. B.34 gives 

~b W  u2  ~ R 

~L C~ Lg~ 
~ss  2 

1+ 
Ku 
Lg 

From the derivation of Eqn. B.21, 

L Ku 2
~f = + 

R Lg 

Vf

(B.36) 

(8.3~~ 

Substituting Eqn. B.37 into B.36 and rearranging gives the steady state sideslip equation 

shown in Eqn. B.3 8 ,which matches Eqn. B.3 5. 

~b W  u 2  ~~L Ku 2 ~ - -  R -I-
~L C~ Lg~~R Rg ~ 

~ss  2 
l+ 

Ku 
Lg 

/ b WR u2~/ Ku2~~L~ --   1+ 
~L C~ Lg~~ Lg J~R I

1+ 
Ku 2 

ass R C~ Rg 

Lg 

b WR u2

~b W  u 2  ~~L~ 
~L C~ LgI~R~ 

(B.38) 
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B.3.5 Alternate derivations for steady state velocity and sideslip 

The sideslip is found by determining steady state lateral velocity and then applying Eqn. B.33. 

To find the steady state when tracking a straight line, begin by setting ass to zero in Eqn. B. S . 

Solving for steady state lateral sideslip in this manner results in 

/`' ss — 

w a3Sf+ a4 SR+ Me
a, a, a, 

(~~ 
l / 

M l  C~ f  + 
~- 

C~~ Mug ~ 

which simplifies to 

(~~ 

_  C'~ C~ W 
l ~ss — ~ f  + C~R + e 

C +C C +C of aR of aR C aJ + C aR 

Another representation is 

~ss — 

b3 b4
~ f  + ~ R

bl bl

i Cab 
/ 1 

~C~a—C~b~~ sf ~C~a—C~b 
Iu ~ ~ 

which simplifies to 

C~ a CaR b 
~ss — ~ f ~R C~ a — CaR b C~a — Ca b 

Iu ~ 
~R 

M Mu ~ 

8 

(B.39) 

(B.40) 

Note that Eqn. B.40 is not an appropriate expression when K = 0 because the denominator 

for both the ~f  and ~R terms goes to zero. 
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For a rear steer vehicle, ~f  = 0 and substituting the resulting expression for ~R from Eqn. 

B.21 where R = oo and a y = 0 gives 

~C K+W~ 
ASS = ~ 8 

\ 
C~ 

+ CaR / 

With a little more algebraic manipulation, this becomes 

ASS = 
Wf

8 
C~ 

or, using the definition of the cornering coefficient, 

1 
~Ss = 8 

c~ 

(B.41) 

(B.42) 

Note that units of must be in terms of radians and the c~ represents the cornering coefficient 

as the sum of both left and right tires in the bicycle model. 

B.4 Roots and stability 

Placing the state equations from above (Egns. B.1 and B.3) into Laplace domain and setting 

the right and side of the equations equal to zero gives 

(s+b2 ~R+b,V = 0 (B.39a) 

~s + al ~V + azR = 0 (B.39b) 

Solving Eqn. B.39a for R and substituting into Eqn. B.39b results in 

~s+a,~V —aZ V = 0 (B.40) 

Solve for s to obtain the characteristic equation, shown in Eqn. B.41. 
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~s+a,~—az ~  b, 
=0 

` s + b2

~s+a, Xs+b2 ~—a2b, =0 

s2 +~a, +bZ ~s+~a,b2 —a2b,~=0 

Using the quadratic formula, the roots of the characteristic equation become 

s= 
— ~al + bZ~± 11 ~a~ + b2 ~Z — 4~a~b2 — aZb~ 

2 

(B.41) 

(B.42) 

System stability exists only for negative real roots, either strictly real values or complex 

conjugate pairs. The real values of the roots will always be negative since 

except when 

~C +C C a2 +C b2 ~ 
a, + bZ =  

~Mu ~ + ~ Iu aR ~ 0 (B.43) 
~ ~ 

~a, + b2~ < ~~a, + b2 ~z — 4~a,bZ — aZb, 

After some simple algebra, this occurs when 

~a,b2 —aZb,~<0 

(B.44) 

(B.4s) 
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Mu 2 I 

1+ 
Mu 2 ~ b a 

L2 C~ C~ 

Mu 2I 
L`C~C~ 

u2  ~W W
1+ f  —  R

Lg ~ C~ C~ 

Mu zl/ 
L L C af C aR 

~ Ku z ~ 
L2 C~ C~ 1 + 

Lg ~ 
Mu 2 I 

Next, substitute for al, a2, bl, and b2 from Eqns. B.2 and B.4 and simplify 

~a,b2 — a2b,~ _ 
~C +CaR ~~C a2 +CaRb 2 ~ ~  ~ 

~ Mu ~~ lu ~ ~ 

~C~ +C~~C~aZ +C~b2 ~—~Mu2 +C~a—

~Mu 2 +C a—CaR b~~C a—CaR b~ ~  ~ 

Mu J ~ Iu ~ 

C~bXC~Q' — CaR b~ 
Mu 2 I 

C~ CaR a 2 + 2C~ CaR ab + C~ CaR b 2 + Mu 2 CaR b — C~ a 
Mu 2 I 

C~CaR ~a+b~2 +Mu 2 ~C~b—C~a~ 
Mu zi 

1 
C~CaR L2 +Mu 2 ~C~b—C~a~ LzC~C~ 

1 
~ Z C~ C~ 

(B.46) 
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When Eqn. B.46 replaces the left hand term in Eqn. B.45, this gives 

L2 C~ C~ 1 + 
~ Lg ~ 

Ku 2 ~ 

2 <0 
Mu I 

Ku 2 1+ <0 
Lg 

Ku 2 <-1 
Lg 

where K is the understeer gradient defined as 

W f  WR 
K= —

C aJ C aR 

(B.47) 

~B.4s~ 

Eqn. B.47 occurs when K < 0 since all other variables are positive; however, only negative 

values o f K where, 

— Lg K<  2
u 

(B.49) 

Another way to look at this is to see the speed, u, at which this occurs for a certain K. This is 

known as the critical speed (u~rlr) • 

u= 
Lg 

K 
(B.50) 
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B.5 Block diagram representation 

The following sections go through the step by step block diagram reduction of the system to 

a single transfer function. The diagrams were created using Simulink° , a product of The 

MathWorks, Inc., Natick, MA. Most figures are not named; rather, the step sequence is 

listed before each diagram. The state equations B.l and B.3 are used to begin the model. 

B.5.1 Block diagram reduction for slope input 

Step 1: 

Y 
Y, desired PID,Y 

Psi , d esi red 
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Step 2: 

PID 

deltaR 

PID 

PID, psi 

1 
s 

1 
s 

Y 

Step 3: 

Use relationship discussed in Section 3.4.1 to reduce the block diagram by relating v to r, 

shown again here as Egns. B.51 and B.52. 

V =  a2 R +  a3 8 j +  a4  8R +  W/M  8 (B.51) 
~s + a,~ ~s + al~ ~s + a~~ ~s + a~~ 

R = b' V +  b3 8 +  b4 8 (B.52) 
(s+b2 ~ (s+b,~ f  (s+b,~ R

First, look only at the block diagram related up until the output of ~. The diagram is shown 

of the following page. 



www.manaraa.com

84 

r 

Step 4: 

Reduce the feedback loop around ~, move constant b4 across the bottom summing junction, 

and move the transfer function block at the left of the top summing junction across the block. 

theta 

deitaR 

W/M 

a4 

a4*b1/b4 

s+b2 

a2 

a4 

b4 

s+b2 
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Step 5: 

Rearrange diagram from Step 4. 

deltaR 

W/M 

a4 

A 

Step 6: 

Rearrange Step 5 to make 8 the main input. 

deltaR 

a2 

a4 

b4 

s+b2 
D 

s+b2 

E 

B 

a2 

a4 

1 b4 

s+b2 
D 

B 
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Step 7: 

Substitute Step 6 back into the entire block diagram system using the relationship in Eqn. 

B.51 to recreate v to be summed at the last summing junction resulting in Y . 

c2 = (a 1 *b4 - a4*b 1) / b4 

c2 

s+a 1 

a2 

W/M 

PID 

b4 

s+b2 

PID 

G8 

1
s 

1 
s 

G4 

G6 

Y 

Step 8: 

Use the labels underneath the blocks and the constants above them to make further 

simplification easier. The rear steer angle summing junction can be eliminated by feeding its 

output signal through to the other summing junctions. Likewise, the lateral velocity 

summing junction can be eliminated leaving the following block diagram representation. 

The D2R, degrees to radians conversion block has also been lumped into GS and G8. 
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Step 9: 

theta 

G8 

G4 

G8 

w• 

Y 

Y 
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Step 10: 

A G6 

G7 G5 G4 

theta G2 

B/A G 1 4--

G4 u + G4 G5 G6 - B G6 

G7 G8  

G4 

1-G4*G6*G8 

Step 11: 

theta 

G7 G5 G4 

G2 

1-G1 *G2*B/A 

A G6 

G4u+G4 G5 G6-BG6 

G7 G8 

G4 

1-G4*G6*G8 
Y 
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Step 12: 

A G6 

theta G1 

Combine these 3 blocksand cal! G 

G2 

1-G1 *G2*B/A-G2*G4*G5*G7 
G4u+G4 G5 G6 -B G6 

G7*G8 

G1 

G4 

1-G4*G6*G8 

Step 13: 

theta 

A G6 

G 
G4 

1-G4*G6*G8 

G*G7*G8 

G1 

Y 

G= 
G1 G2G4u — Gl G, G4G;G6 — BGl G, G6 

B 1— G1 G2 — G, G4 GS G, A 

(B.53) 
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Step 14: 

Step 15: 

G4 

1-G4*G6*G8 

G*G7*G8 

G1 
~—

Y 

theta A*G6 - G 
G 1 *G4 

G1-G1 *G4*G6*G8-G*G4*G7*G8 
Y 

Combine the two transfer functions in Step 15 to achieve the final transfer function shown in 

Eqn. B.54 with G defined in Eqn. B.53. 

Y  A G1 G4 G6 — GG1 G4 
8 Gl — G1 G4 G6 Gg — GG4 G, Gg

(B.54) 
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B.5.2 Block diagram reduction for initial condition, Yo

The reduction of the block diagram is almost identical to the reduction of the system with the 

slope as the input. To incorporate Yo, 8 is set to zero and therefore all signal paths with 8 

disappear. The resulting diagram is shown below. 

YO 

G2 

G 1 B/A 

G8 

G4 

G8 

Y 

This reduces in exactly the same manner as the slope input diagram, and produces the same 

step sequence with the only difference being the input is the initial condition rather than the 

slope. The difference can be seen by looking at Step 14 with Yo as the input. This reduces to 

the final transfer function given in Eqn. B . 5 S . 

G4 

1-G4*G6*G8 

G*G7*G8 

G1 

Y Gl G4
Yo G, — G, G4 G6 Gg — GG4 G, Gg

Y 

(B.55) 
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B.6 Transfer Function Derivations 

This section substitutes values for the G terms in the previous section to derive the final 

transfer functions for the slope input and initial lateral error input. It also shows the 

generalized transfer functions for each of the controller gains. In order to simplify the main 

transfer function shown in Eqn. B.54, the numerator and denominator are separated and 

divided into parts. The parts are then combined and the overall transfer function is created. 

B.6.1 Transfer function G 

The transfer function G is used in both the numerator and denominator of Eqn. B.54. Its 

derivation is shown first in order to further derive the others. The expression for G is shown 

in Eqn. B.56. 

G = G'GZG4u — G,GZG4GSG6 — BG,GZG6 
(B.56) 

1— G,GZ A — GZG4GSG, 

Numerator

G,GZG4u =  gb' b4 •1  • u 
b4~s + a~~ s + b2 s 

gb~ u 
s~s+a, Xs+b2 ~ 

2 
g b l  b 4  1 K d~ S  + K PY~'S + K l~~ a 4 i 2 4GsG6 — x 

bas+a~~ s+b2 s s s+al 

gbi xa4 Kdv~ s  2 + KPv~ s  + K %~V 

S Z ~s+a~~2 ~s+bz~ 
(B.sg) 



www.manaraa.com

93 

BG,GZG6 — a2 •  gb' b4 a4
as ba s+a~~ s+b2 s+a~ 

a2 gb~ 
~s +a,~2 ~s+b2~ 

Combine the parts of the numerator to get the overall numerator of G. 

gbi ~~u + xaa Kaw — a2 ~s Z + ~ua, + xaa KPw 1'. + xa4 K;w

sz ~s+a,~2 ~s+bZ~ 

Now look at the individual parts of the denominator. 

Denominator

G, GZ B =  gb' b4 a2 • a 4
A b4~s + a,~ ~s + bZ~ a4 g 

aZb, 
~s+a, Xs+b2 ~ 

2 b4 1 Kd~ s + KPH s + K;~ S + (al b4 — a4 bl ) ~ b4._. 2 a s ~—  x 
s+bz s s s+al

x~~Kay,ba ~3 + \ K dyi ~a~ba — aab~ J+ Kpw ba ~z + ~KPw ~a~ba 
S Z ~S +aiXs+bz~ 

(B.59) 

(B.60) 

(B.61) 

(B.62) 

Combine the parts in the denominator and find a common denominator among those terms. 

SZ~S+a~Xs+bz~—a2b,s2 —x /lKd~,ba 1' 3 + \K dw ~a,b4 — aab~~ + Kpw ba ~2 
~ 

~ + ~Kvw ~a~b4 — a4b~~ + K~v~ba P. + K~a~ ~a~ba — aab~ ~~ 

s2 ~s+a, Xs+b2~ 

Now simplify and collect the s terms to obtain the overall denominator of G. 
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~s4 +~a~ +bZ —xb4Kd~vl~s3 +~a,bz —a2b, —Kdw x~a~b4 —a4 b,~—KP,~xb4 ~s 2 ~ 

~ + ~— Kp~x~a~ba — aab~~ — K,w xba ~ — K~w x~a~ba — aab~ 

s2 ~s+a~Xs +bz~ 

(B.63) 

Next, combine the numerator and denominator from Egns. B.60 and B.63. 

gb~ ~~u — a2 + Kdwxa4 ~s2 + ~ua~ + KPw xa4 P. + K;w xa4 
~s4 +~a, +b2 —Kdw xb4 ~s3 +~a,b2 —alb, +Kdw x~a4b1 —a,b4 ~—Kpw xb4 ~s 2 ~ 

~S+a~~ l- 
~ + ~Knw x~aa bi — a~ba~ — Krw xbal' + K,w x~aabi — a~ba~ 

(B.64) 

Once again, break the equation into pieces to make simplification easier. First, expand the 

denominator and collect the s terms. 

Denominator

= S5 + a,Sa + al + b2 — Kd xb4 S
a 

~+ alS3 + alb2 — a 2 b l + K dy~ x \ a 4 b l — a l b 4 l — Kpy~xb4 S3 + alS2 

+ K x \ a 4 b l — a l b 4 l K i xb4 S  2 + a l'S + K ith 'x Caa b~ — a~ b4 X`s + al PTV ~ 

=s5 +~2a, +b2 —Kd,~xb4~4 

+~a~ +a,b2 —Kdw xa,b4 +a,b2 —alb, +Kdw x~a4b, —a,b4 ~—KPw xb4 ~s3

+~a; bZ —a,a2 b, —Kdw xa,~a4b, —a,b4 ~—KPw xa,b4 +KP,~x~a4 b, —a,b4 ~—K;,~xb4 ~s 2

+~Kpy,xa~~a4b, —a,b4 ~—K;w xa,b4 +K;w x~aa b~ —a~ba ~~s' 

+ ~K;w xa~ ~aab~ — a~ba~~ 

(B.65) 

Combine Eqn. B.65 with the numerator of Eqn. B.64 to obtain the final transfer function for 

G shown in two forms in Egns. B.66 and B.67. The later is used when substituted into the 

expressions in following sections. 
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gb~~~n~ +KawnzPZ +~n3 +Kp,~n 2 ~s+K;y,n2 ~ 
G ~s+a,~s4 +~d, —KdwdzP3 +~d3 +Kd~da —KP~d2P2 +\KPV~da —K;wdz~+K;wda~ 

(B.66) 

where 

d, = al + b2 
d2 = xb4
d3 = a,b2 — a2b, 

d4 = x~a4 b~ — alba 
d5 = 2a1 + b2

2 db = a, +2a,b2 —alb, 
z d, = a, — a, aZb, 

d$ = xa~ ~aa b~ — a~ba
d9 = x~a4b, — 2a,ba

nl = u - a2
n2 = xa4

n3 = ual

gb,~N2s2 +N,s+No ~ 
G — ~s+cr,~s4 +D3s3 +DZs2 +D,s+Do ~ 

where 

N2 — nl + Kd~n2 
Nl = n3 + KPw n2 

No — Kiy,n2 

D 3 d, K dyr d 2

D 2 - d 3 +K dyr d 4 - Kpyr d 2 

Dl - K PV~ d 4 - K iyr d 2 

D O - Kiyi d  4 

(B.66a) 

(B.66b) 

(B.67) 

(B.67a) 

(B.67b) 
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B.6.2 Main transfer function T 

Y AGlG4G6 — GGiG4
B G, — Gl G4 G6 Gg — GG4 G, Gg

Numerator

AG G G — g  gb~  1  a4
1 4 6 

as ba s+ a~~ S S+a~ 
._. 

2 g bl 
b4s~s + a~~z

gb, ~NZ s Z + N, s + No ~  gb,  1 
GG,G4 = ~s+a,~S4 +D 3S3 +D ZSz +D,s+Do ~ b4 ~s+a,~ s 

g Zb,2 ~N2s2 +N,s+No ~ 
b4s~s+ Q~~2 ~s 4 +D3s3 +DZs2 +D~s+Do ~ 

(B.68) 

(B.69) 

(B.~o) 

Subtracting Eqn. B.70 from B.69 and collecting s terms gives the overall numerator. 

g2b,(S4 +D 3S 3 +~D Z —b,N2 ~s z +~D, — b1 n, ~s + ~Do — b, No ~~ 
b4s~s+cr~~Z ~s 4 +D3s3 +DZs2 +D1s+Do ~ 

Denominator

G, —  gb'
bas + ai~ 

gb,  1 a4 K dY's,  +. K  pY'S + KiY 
1 4 6 8 x 

b4 (s+a1 ) S s+al s 

gb,a4 x(Kdy S Z +K pYS+K ;y ) 

bases + a~~2

(B.~i~ 

(B.72) 

(B.73) 
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GG G G —  gb,~NZsZ +N,s+No ~  1 b4s+a,b4 —a4b, Kd,,s2 +Kp,,s+KJY x
a ~ s— ~s~a~~s4 +D3s3 +DZSZ +D,s+Do ~ s ba s+al ~ s 

gb1x~N2s2 +N,s+No kb4s+a~b4 —a4 b~~K~,s z +KpYs+K;Y ~ 

baS2~S+a~~2~s4 +D3s3 +DZs2 +D1S+Do ~ 

Combine the parts of the denominator to get 

gbi

(B.74) 

/ S 2 (S+a l S 4 +D3s3 
+D2S2 

+D,S+Do —a4x KdYs2 
+KpYs+KiY S4 +D3s3 

+D2s2 
+DiS-}-D~ 

~ 

~ —x N2s2 +N,s+No bas+alb4 — aabl KdYs 2 + KpYs + K;Y ~ 

U4s2 `S + a1 I2 S4 +D 3 s3 +D 2 S2 +D Is +D O 

(B.~s) 

Now, combine numerator and the denominator (Egns. B.71 and B.75) to obtain 

s s4 + D3s3 + D2s2 + Dls + Do — bi NZSZ + Nis + No 

S2 (S+ai S
4 

+D 3s 3 +D iS+D O K dYS2 +KpY'S+KiY 

/ a4x S4 + D 3s,3 + D Zs,2 + Di,s + D o ~ 

~ +x NZSZ +Nis+NO  b4 +S+a l b a —a4 b il/ 

(B.76) 

Once again, separate the numerator and denominator to make simplification easier. 

Denominator

Expand the equations and collect the s terms in two steps. 

= S '  ~" D3S6 + D2S5 + Dis4 + DoS3 + a iS6 + a i D3S5 + a i D2s4 + a iDis3 + ai Dos2

2 ~ a4 xS 4 
+ (a4 xD3 + N 2 b4 x)s 3 + ` a 4 xD 2 + N2 x(ai b 4 — a 4 b l l + Ni xb4 )S 2 \ 

— KdY s +K pY s  +K iY 
~+ (a4 xDi + Ni x(ai b4 — a4 bi l + No xb4 )s + No x(ai ba — as bi~ + a4 xDo / 
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= s '  + CD3 + a l — K dY n 2 l'S 
6 

+~D +a D K ~n D +N d) —K n ~s 52 1 3 dY 2 3 2 2 pY 2 

+ D +a D K Cn D N d +N d) —K Cn D +N d) —K. n ~s 4( 1 1 2 dY 2 2 2 4 1 2 Y 2 3 2 2 ~Y 2 P 

+ Do +a1 D1 — KdYCnaDi — Nida +Node)—K YCn2Da — NZd4 +Nid2~— K~YCnaD3 +Nadz~1~ 3P 

+( a D +K N d K Cn D N d +N d) —K. Cn D N d +N d) —K n D ~s 21 0 dY 0 4 Y 2 1 1 4 0 2 ~ Y 2 2 2 4 1 2 dY 2 0 P 

+ K YNod4 — KiYCnaDI — Nlda + Noda~ — K Yn2Dol~' P P 

+ CK;Y No d a — KiY n a Do 

(8.~~~ 

When substitution is made for variables, the last term goes to zero. This gives the resulting 

denominator for the overall transfer function. 

= s' +DDbsb +DDSss +DD4s4 +DD3s3 +DDZs2 +DD,s (B.78) 

where DDI.6 replace the corresponding expressions from Eqn. B.77. Substituting for the 

constants Do_3, No_2, dl_9, and nl_3 defined in Eqns. B.66a through B.67b to get the DDI.6

expressions in terms of Eqns. B.2 and B.4 results in the following expressions. 

DD6 = Kdw ml + Kam, m2 + m3

DDS = Kd~ m4 + KPH mi + KpY m2 + KdY m5 + m6 

DD4 = KPH m4 + K;~ mi + Kd~, m~ + K;Y m2 + KdY ms + KpY ms + m9 

DD3 = K;y,ma + Kp~m~ + KdYmio + KpYms + K;Yms 
DD2 = K;~,m~ + KpYmlo + K;YmB 

DDl = K;Y ml o 

(B.78a) 
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yni = —xb4
m2 = —xa4

m3 =gal + b2 
m4 = xa4 bi — 2xal b4
yyl5 = —xal a►4 — xa 4 b2 — xb 4 u + xa2 b4

m6 = 2a1b2 — a2 b1 + al 

m~ = xa, a4b1 — xal b4
mg = —xal a4 b2 + xa4 bl u — 2xa, b4 u + xai a2 b4

2 m9 = al b2 — al a2 bi

mlo = xala4bl u — xal b4u 

Combine with the numerator to get and multiply both top and bottom by 1/s. 

g(S 4 -I- D 3 S 3 -I- ~DZ — b~ Nz ~s Z + ~D~ b~ N~ ~s + ~Do — b~ No~~ 
sb + DD6s5 + DDSs4 + DD4s3 + DD3s2 + DDZs + DD, 

(B.78b) 

(B.79) 

Now, substitute for expressions in the numerator of Eqn. B.79 to obtain an expression with 

vehicle parameters as defined in Egns. B.2 and B.4. This is shown in two steps. 

— 
g 

/S 
4 

+' ` a l + b2 K d xb 4 )•s 3 + `al b2 — a2 bl + K d x\a4 b, — a, b4 ) K xb4 — b, u + b, a2 — bl Kd xa4 ~ 
2 ~ 

~ +~ P~ ~ 

+ ~K xCa4 b, — a, b4 l K; xb4 — b, ua, — b, K xa4 ~s + (K; xa 4 bl — a, b4 l — b, K; xa4 ) \ PTV ~ P~ ~ ~ / 

— g S 4 
+ Kd~ nZl 

+ Z1 3 + K d~ Z2 + KPw 
n21 

+ Z3 2 + K PH Z2 + K~~ n21 + Z4 + K►~ Z2 

where 

zl = ai + b2
Z2 = —xal b4
z3 = al b2 — bl u 
z4 = —bl ual

~B.so) 

(B.80a) 

Finally, combine Eqn. B.80 and the denominator of Eqn. B.79 to obtain the final transfer 

function for a slope input shown in two forms. 
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g s a 
+ Kd~~ ml 

+ Z1 3 + KPv~ ml + Kd~ Z2 + Z 3 2 + 
Kp~ 

Z2 + Krw ml + Z4 + 
Kra 

Z2 

/S 
6 

+ K m + Kd m2 + m3 5 + K ml + Kd m4 + K Y m2 + KdY m5 + m6 4 ~ 
dyr 1 Y pyr W p 

+ K m +K. m +K m +K m +K. m +K m +m 3p yr 4 r yr 1 d tV 7 pY 5 rY 2 dY 8 9 

+ Kp~m, + K;~m4 + KpY mg + K;Y mS + KdYmlo s2 

+ K;~m, +KpY mlo + K;Y mg + K;Y mlo

y_ g~S4 +NN3s3 +NN2s3 +NN2sz +NN,s+NNo ~ 
8 sb +DDbss +DDSs4 +DD4s3 +DD3s2 +DDZs+DD, 

where 

NN3 = K dyr m l + Z1 

NN2 — KPH 
ml 

+ Kd~ Z2 + Z3

NN, = Kp~ Z2 + K~~ ml + z4 

NNo = K;y,z2 

(B.81) 

(B.s2~ 

~B.s2a> 

B.6.3 Transfer functions for generalized root locus of controller gains 

The denominator in Eqn. B.81 can be rearranged to isolate each individual controller gain. 

The following derivations show this process in two steps. The first step collects all the gain 

terms, the last step divides by the right hand side and simplifies according to the expressions 

represented by Eqn. B.78a and B.78b. 

PY~ 

Kp~ m,s 4 + m4s3 + m,s 2 + 

/ S 6 + 
Kd~mi 

+ 
KdYm2 + m3 5 

+ Kd~m4 + KpY m 2 + K dY ms +- m6 
4 

+ K;~ m, + Kd~ m, + K pY m 5 + K;Y m 2 + KdY m 8 

+(K. m +K m +K. m +K m 2r 4 Y 8 rY 5 dY 10 ~ P 

+ K;~m~ + KpYmlo + K;YmB +K;Ymlo 

+ m 9 3

(B.83) 
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TK PW — KPW m,s4 +m4s3 +m7s 2 

K~~ • 

s 6 + DD s S + DD — K m 4 + (DD4 — K m 4 3 + (DD3 — K m ~ ~s 2 + DD2 s + DD, r 
5 1 \ ~" PW 6 \ ~ PW PW 

K;W m,s3 +m4s2 + m,s 

TK;W — 

Kd . ~• 

/ S 6 + 
KdWml 

+ 
KdYm2 

+ m3 5 

+K m +K m +K m +K m +m 4 
pW 1 dyr 4 pY 2 dY 5 6 

+K m +K m +K M +K. mK m +m 3pW 4 dyr 7 pY 5 ~Y 2 dY 8 9 

+ K m +K m +K. m +K m 2 
pW 7 pY 8 ~Y 5 dY 10 

+ KpYmlo + K;YmB + K;Ymlo J 

K; m,s3 +m4s2 +m,$) W 
s 6 + DD6s S +DDSs 4 + ~DD4 — K; m, 3 +DD3 — K;W m4 2 + DD2 — K;W m, + DD, w 

Kdw 
mis s +m4s 4 +m7s 3 

TKdW — s + — S + DD — K m 4 + DD — K m 3 + DD s 2 + DD s + DD s DD6 KdWm, S dW 4 4 dyr 7 3 2 1 

/S6 
+ `K dY m 2 + m3I

S5

+ K m +K Ym2 +K dY m s +m61' 4( 1 PW P 

+~K m +K. m +K m +K. m +K m +m 3pyr 4 ~W 1 pY 5 tY 2 dY 8 9 

+~K m +K. m +K m +K. m +K m 2 
pyr 7 ~W 4 pY 8 ~Y 5 dY 10 

+ K;Wm, +KpYmlo + K►Y ms + K;Ymlo 

Kd ~m,ss +m4s4 + m,s3 ) W 

~B.s4) 

(B.85) 

(B.86) 

(B.ss) 
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KY . 
P 

KpY m 2s4 +mss3 + m$s 2 + m,os 

TKPY — 

iY • 

~s 6 + 
Kdwml 

+ K~rm2 + m3 s 

+ Kp~m, + Kd~m 4 +KdYms + m6 4 

+K w m +K. m +K m +K. m +K m +m 3p 4 rye 1 dyr 7 rY 2 dY 8 9 

+K m +K. m +K. m +K m 2p~ 7 rye 4 rY 5 dY 10 

+ K;~m, +K;omg +K;Ymlo 

~B.g9) 

K Y (m2s4 +mss3 + m8s2 + m~os~ P \ 

s 6 + DD s s + DD — K m 4 + DD — K m 3 +DDS — K Y m81c 2 + (DD2 — K Y ml o IS + DD, r 
4 Y 5 ( l~ P 5 Y 2 \ !`" P 6 \ I'" P P 

K,Y 
m2s3 

+mss2 +mss + m lo 

/ S,5 + 
Kd~ml 

+ 
KdYm2 

+ m3 5 

+ KPw m, + Kd~ m 4 + K pY m z +KdYms +m6 
4 

+ Kp~m 4 + K;w m, + Kd~m, + KpY mS + KdYmB 

+ K m +K. m +K m +K m 2 
py~ 7 rye 4 pY 8 dY 10 

+ K;~m, + KpYmlo 

K;Y m2s3 +mss2 +m8s + m lo TK;Y— 
6 + s + 4 +DD —K.mis3 + ( DD—K.m is2 + ( DD —K.mis s DD6s DDSs ( 4 rY 2 l \ 3 rY 5 l ` 2 rY 81 

+m9 3 

~B.9o~ 

(B.91) 

(B.92) 
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Kdy 

KdY rIZ2s5 
+ 

YjZss4 
+ 

n28s3 
+ mlos 2 

is 6+ 
Kd~ m 

l+ m 3 s 

+ Kpw m, + Kd~ m 4+ KpY m 2 + m 6 a 

+ Kp~m4 + K;~m, + Kdw m~ + KpY ms + K;Y m 2 + m9

+K m +K. m +K m +K.m 2py~ 7 rye 4 pY 8 rY s 

+ K;~ m~ + KpY mio + KAY ms + K;Y mto 

k 3 

(B.93) 

_  KdY m2s5 
+ m5s4 +m8s 3 + mlOs2 

TKdY 6 — l s +- — 4 + — 3 + — 2 + + s + CDD6 K dY m  2 l s  CDDs KdY mss CDDa KdY m8~s CDD3 KdY m i o~s DD2s DD, 

(B.94) 

B.6.4 Transfer function for initial lateral error 

The denominator of the initial lateral error transfer function is the same derivation as shown 

in Section B.6.8. The numerator is much simpler to solve. 

G 1 
gb,  1 _  gb, 

G4 bas+a~~ s b4s~s+a~~ 

Combine the numerator and denominator to get 

(B.95) 

S~S + a~~s4 + D3S3 + DZSZ + DDS +Do~ 
~sZ ~s+a~~s4 +D3s3 +DZs2 +DDS+Do~ — aax~Kars2 +Kprs+KrrXs4 +D3s3 +Dzs2 +D1s+Do ~~ 

~ —x~Nzs2 +N,s+No kb4s+a~b4 —a4b~~K~,s2 +KpYs+K;,,~ ~ 

The denominator is the same as Eqn. B.76, which reduces to Eqn. B.78, so multiply by 1/s. 

~s+a,~s4 +D3s3 +DZSZ +D,s+Do ~
s6 + DD6s5 + DDSs4 + DD4s3 + DD3s2 +DD2s + DD, 

Expand the numerator and collect like s terms. 

(B.96) 
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S 5 +CDs + a~~S 4 + ~Dz + a~ Ds~S 3 + ~D~ + a~ DZ ~S 2 + ~Do + a~ Di JS + a~ Do 
sb +DD6s5 +DDSs4 +DD4s3 +DD3s2 +DDZs+DD, 

(B.97) 

Note that because the denominators are the same as before, the generalized root locus for the 

controller gains will also be the same. Next, substitute values for the constants in the 

numerator using the relationships given in Eqns. B.66a through B.67b. The process is shown 

in three steps. 

= s
5 + 

dl  
— 

Kd~d2 
+ 

al  
4 

+d +K d K d +ad —aK d 33 dyr 4 pyr 2 1 1 1 dyr 2 

+ K d K. d +ad +aK d aK d 2pyr 4 i~ 2 1 3 1 pyr 4 1 pyr 2 

+ Kiw 
d 4 + 

al  
KP~V 

d 4 — 
al  

Kiyr 
d  

2 

+ a l Kiyi d 4 

Additional substitution yields, 

=s5 +~a~ +bz — Kawxba +a~ 
1_4 ~~. 

+~a,b2 —aZb, +K~x~a4b, —a,b4 ~—KPw xb4 +a~ +a,bz —a,Kdwxb4 1_3 j~. 

+~Kp~,x~a4b, —a,b4 ~—K;y,xb4 +a, bZ +a~azb~ +a~KPwx~a4b, —a,b4 ~—a~Kp,~xb4 ~r Z

+~K~wx~aab~ — a~ba~+a~KPw x~aab~ — a~ba~ — a~K;wxbaP.
+a,K„~x~a4b, —a~ba ~ 

Collect like terms and simplify. 

=s5 +~Kd,~~—xb4 ~+2a, +b2 ~4

+~Kd,~~xa4 b, —2xa,b4 ~+Kpw ~—xb4 ~+2a,b2 —alb, + ai ls'3

+~Kdw~xa,aab, —xa; b4 ~+Kpw ~xa4 b~ —2xal b4 ~+K;w ~—xb4 ~+a; b2 —a,a2b,~s 2

+ ~KP~, ~xa,a4b, — xa; b4 )+ K;w ~xa4b, — 2xa,b4 ~~s 

+ K;y, ~xa, a4 b, — xa; b4

(B.98) 
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Using the variables ml_lo as shown in Eqn. B.78b, the transfer function becomes 

ss +K m +m a +K m +K m +m 3 +Kd m,+K m4+Kr m,+m9P.2+(K m~+K; m4).s+K;~m, _ d 1 3 d 4 1 6~ ( ~ py~ w P~ 'N ( I' ( y~ PW 

s 6 + DD6 s 5 +DDSs 4 + DD4 s 3 + DD3 s 2 + DD2 s+ DD, 

Y _  S5 + N4s 4 + N3s 3 + N2s2 +N i s  + N O 

Y s 6 + DD s 5 + DD s 4 + DD s 3 + DD s 2 + DD s+ DD 0 6 5 4 3 2 1 

(B.99) 
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APPENDIX C. MATLAB CODE 

This Appendix contains the computer code generated in MATLAB~ (The MathWorks, Inc., 

Natick, MA). The entire code is included with the exception of the plotting routines, which 

makes the code much longer and detracts from the main objective of the code. 

C.1 Linear simulation code: combineSimBasicLinear.m 

clear ::~1= 
C1C 

li J_ \., l;. \~ l;. J, l~ J, ~; C, '~J, ~: l; J, ,., 1, i, li. J, _ \, l: J, \, l; _ \, 1, ~~ l .J ~., C .i„ 1, J, \, C J l,. J, ,., lam. J, .. 

_ •(3 \J _ ~<:: .J _ •C3 .J .. _ ~<: •:.~ ~~:: \. \. _ •i: 'J ~ ~<: ':: .. ~<'.: ' J .. _ •C \J _ .J J _ _ .J 
.v .. <: .J •<'.:

.v \. _ <: .J ~C 
.v  _ "C \J .. ~<:: •J 

L., ~ ~ '- -F-- ~~ 

\? C:, ~. ♦ . l., :l, \. C:, J, \' i, \ :J, \'. C., J, \ C.. i. \, Vii. \r  J, \~. i, \' :i_ t. . i, ♦~ :J, ~. !, ~ C,, i, \' C„ i, \ l ; , 

.. \~ .. '.J .- \. .. .J .. \~ ~:J ~J _ \: .. -.J .- \. :J J .. \: :l ~.J ., \~ :J J .. \. :J - J .. \ ~.J J .- \. .~ v \. ~.J J .. ♦ .. J _ \ .. 'J .. \. .J .. \. ~:J -J .. '.J ! \: .. 

L = 11.5; 
g = 32.2; 
W = 34000; 
M = W / g; 

Wf_ratio = 0.80; 
Wr ratio = 1 - Wf ratio; 
a = L * (1 - Wf_ratio) ; 
b = L * (1 - Wr ratio) ; 
Wf = W * Wf ratio; 
WR = W * Wr_ratio; 
Izz = (M/4) * (a + b) ~2; 

u_mph = 10; 
u = u mph * 5280/3600; 

•~ ~ :.. 
J  1 

_, 

~7 
.i 7.~ ~ ~.~ ..... .. ... .... .... 

;... 
~....... r .... ~ j 

:... ~ _ V : ,_=. .. L ~.. ~ :'~ . i.J ..I. '_i . 1. ~ .I.. ~. :~ 'L.. j 

C:.  
: j Y7 v _ \.f _'~ ~ '~ ~ a :' `. ?~ ~ Y\ 

y~ ~... ~ L\ .. 1 V i ` .~ .L Li ~ ~ L.~ 

t

~~ 

_' 

.>..J i„~ 

i ( 

(v
., ...: ,:.a ~. 
(~ :-~ .,•• <., 

_~;__; 

-: ~.. ; . 

\, 1, -i, ~., l: ~, ~., l,. i, ~., l J, ♦, 1. i, li .. ~, l~ J, ~, l., '.J, ~. C J, \., l J_ - ♦, li .. ~., li ~•J, ~., l J_ \-~ ~~. J_ ~.. l~ J, _ %' l.` i, %' l' i, %' C., '. J, _ %' 

\J .. _ .. .. .J ~:J .. .J O ~ .. .. \J .. .J :: .. _ .J \J ~ _ .J ~:: .. _ .. \J .. \J _ .J \J _ v \J ~ _ .. \. ~ .J \J .. .J ~:: .. _ .J \J .. .J \J \ .J J ~.. .J .. 

~ J ~ 
~ .1... ~ C~i Y~ \.~ _. .L .L ~ .~ i~ ~ t :. 1 ~ w ! ~ ..1 ~ ti  ~ ~ :.i ~ t ~ ~i i' \.. _~^ i.i `(i 

C.: ~., Ci J, \, Ci J, \, li. ' •J, ~, l: J, ~, l.: J, li .J, ~, li li \., 1, J, l:. \., l~ ~, l' J, \, 1, J, l,. J, l,. J, ~., l: .J ~., C_. J, 1, 

cornerCoeffFront = 0.06; 
cornerCoeffRear = 0.06; 
Calphaf_deg = cornerCoeffFront * Wf ; 
CalphaR_deg = cornerCoeffRear * WR; 

.. .... .. .' . ` :r . .. ~~..... ... ~ : ~=• t1 
rr F ~ 

.. ~ .mil i~~ ~ = - `'~ ~~ 

~. Y~ ~ ' ~` [[''' ~:~ :J .... .:.; :,7 ; ..( C.. 
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CalphaR = CalphaR_deg * 180/pi * 2; 
Calphaf = Calphaf deg * 18 0 /pi * 2 ; 

K = Wf /Calphaf - WR/CalphaR; 
uCrit = sgrt(L*g/abs(K)) * 3600/5280; 

C.: ~ C.: ~ : ~ C.: ~ C:.: ~ ~..: ~_ C.: ,_ C.: ~ C. : ~ _ C.: , C.: ~ C.: ~ C.: ~ C.: , C.: ~ C.: ~ C.: ~ _ C.: ~ C. : ~ 
'i~ '~\ :=\ '~\ '~i 'i '~\ •i '~ 'i '~ ~'1 : mil 1 ~'.J (~ ~? ~\'. ~'.J ./ '1 ♦: ~.J ~i (? ♦: ~:J ~i ~~.? ♦: ./ -i '~~ ♦: ~'.J ./ (.? ♦: ~'.J -./ ~~ ♦. CJ _/ :1 \: ~Cl i (.? i \: ~'.7 ~i ~? ~i: ~'.I / ♦: ~:I '/ ~l ♦• ~'.J Ji ~.~ ♦: ~'.J ( i ~~ ♦: ~:J './ ♦. ~CJ ./ \: ~:J './ \: ~C1 ./ \• ~/ -.! 

1̀ ' I~ 

l.: ~i. :. V. L' V 'J. v. ~. • L. :.? i:~ L. :.? C. :.? _ ': . C. :.? C. :.? L. :? ~:. L. :? C. :.? ~,. L. :.? ~, L. :.? ~.. v' .. _:> :.? :? C,. . 
i'\ i'\ i"` i ` i~ 

steerType = 1; `~ ~~: 
steerAngle = 0; (:: 

if steerType == 0 
deltaf deg 
deltaR_deg 

else 
deltaf deg 
deltaR_deg 

end 

= steerAngle; 
= 0; 

= 0; 
_ -steerAngle; 

_ , r,  \ _ ~- Y~ ..~ rti ( rti t v  -;- 7 '•~ - ~:~ :~' l  = ~ /̂ '1 ) ' ~' y !v  ~"`: V  r ~ y 1^, 

deltaf0 = deltaf deg * pi/180; 

deltaRO = deltaR deg * pi/180; 
~~1~~ ._.~~_~~..~~~ ~e~. ~ ~::_~ d:r1 ..~:~_ _~_ ,rem

i 

~. 
'.J 

-~ 1 ~.. 

•~Z 
w{. ~•..~ :..i. .... 

>.: ~' :. ,_ ~ _ ~.. ~.t ~ i n ? , ~ i.i ~.. ~ ~: ~ ~: ~ ~. n 
r,  

~.i :~ s C. C~ n ~ '~ t_. ..i 

Kpoff = 3.7; 
Kdoff = 1.3; 
Kioff = 0.05; 

KpHead = 74.0; 
KdHead = 0.0; 
KiHead = 0.0; 

controlon = 1; 

(: 

~• :7 :.``.F':i 

~`•~ r  r  ~`~ L".. 

t he t aD eg = 5 ; ~ :_.~ ~ ._ ~ ::r:~ :~ :1.: ~~ ; ::: ... Y : ::~.::: ~ :3 ~=::~ .: ~; 
theta = thetaDeg * pi/180; `; ~~le~~ _:_ = d~aA~~ 
Fy ext = W*theta; 

(~ i. ♦; 1. ./. ~: l; i„ ~.~ l; /. ♦-. l;. .. ;.~ l -_/.. ~. 1.;, _i, l: ♦~ lJ ♦. l: /. ♦., 1, /. lJ. J. :. lJ \. l: i. _ \. l: _/, ~. C,. /. _ ~. l,. ./. ~. l' /~ ~.~ ~; /, 
_ "C: "J ~.. _ C: 'J .. _ ~<'.: .v .. ~<:: .. .. ~. ~<'.: J ~.. _ C: 'J "C 'J ~. ~C: J ~._ ~C .. .. ~<:: ' :i _ "C •.. ~ ~(J 'J .. .. "<'.: ' J .. _ ~<'.: ~J ~.. _ C •.. .. "C .. ♦. "C 'Q ~.. _ ~C: ":/ .. .. ./ 

('; - (~' ~\ .` I (': '\ 1 l (': '\ (': '\ `1 l' ('; '\ .` I (': r (': 
.\ 

;1 (-: ~ .` C (~: ~ 1 l '\ ('~ '\ ; ('~ `1 / '\ ;1 r (': -\ 1 I (': '\ (': '\ 1 I (': '\ `1 (': '\ ~'. C., ./. \: J, \. C., /, ~ l:, Vii, \. /, l.. /. \? /, \~ ~/. ~ i, \\. l.. /, \.~ :/. \'. :i- \'. /, \, i \.. C., /, \: l:, :/. \~ C., /. \ ~ :i, l.. 

dt = 0.01; 
t0 = 0.0; 
~;lo~ .:~ a_ ~: 
tFinal = 10.0; 

i f controlon 

~~~ .`.. ..`., tip:.. . ... 

.....' r  ..~, ~. .. 1 
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tControl = t0; 
else 

tControl = 1000; 
end 
tspan = O:dt:tFinal; 

:J_ f !ti :~ii~~~ on ~~ol_e~r ~~:~~es o~~{~>~~ - 

C.: ~ C, : ~ C, : ~ C.: ~ C.: ~ C.: ~ C.: ~ C.: ~ Q : ~ C.: ~ - C.: ~ C, : ~ C.: ~ C.: ~ C, : ~ C, O C.: ~ C.: ~ 

i' 

c, c, c, c~ ' . c c~ c _ i:~ • . c. c _ c. c:. ' . c. ~~ ~ i:: c c c. 
'7 c -- - - - `~ 

al = (Calphaf + CalphaR) / (M*u) ; 
a2 = (M*u~2 + Calphaf *a - CalphaR*b) / (M*u) ; 
a3 = Calphaf / M; 
a4 = CalphaR / M; 
bl = (Calphaf*a - CalphaR*b) / (Izz*u) ; 
b2 = (Calphaf*a~2 + CalphaR*b~2) / (Izz*u) ; 
b3 = (Calphaf * a) / Izz ; 
b4 = - (Ca 1phaR * b) / Izz ; 

~~ .. L ~~ ' ;. Q Q L, :.` 'J. L, J l' ' ;. L, :.? l.' L :.? L`., :.? _ L. :? _ L U :> C:. :.~ ':%. C :.~ (~. Q i_, 'v, U Q O _ C? i~' ~~ . ~ L ~i, L l' 
i'` - i'` i ` i'` i ` i'' i~ i~ tel: 7\  .. C: Q .. :) .. ~C: 'Q .. l: '7 .. .. :) .. .. 'Q .. ~V :) .. V 7 .. ~l: 7 tel: '7 .. ~l: Q .. .. :) .. .. :l .. C: O .. .. :) .. rl: ':) .. O 

_ / _ I ~ -• 

_ ♦: CJ J. ~.~ 1, /. v l: ./. ♦~ l% _/. \~ 1, /~ ~. l:. \• 1, ~~ C: ./. ~. l: /_ \~ 1, ~, 1, /. \~ C: /. ,.~ l:. /, ~. l:. /, _ \: l: /, ~. ~~. /, ~~. ~: /. \-, ~: /_ ~. 
J _ ~<:: "J .. ~~~ ':: .. ~C "J .. C: "L: .. 'C 'J .. _ ~G "J _ "G ./ ~ _ "C ':J "<:; .. ~ <: ./ .. "<: .. "<: ':: _ "C .. .. "C: "J .. "J .. _ "C: .. _ "~:: "J _ "~J ., .. 

options = [ ] ; .l. 

x i n i t = [ 0 0 0 0 10 0 0 ] ; ~~: T :Yi .:i.. ._ :i. ~ . .:I... ~~..:~~ ; :: . :i. ~~:.:►.. <~ ::~:. ;; 

[t, x] = ode45 ( ':~~r.~~~~E~ ~...~.-rs~3;=s:.c~-.:_iY~e~r' , tspan, xinit, options, u, a, b, M, 
Izz, W, deltaf0, . . . 

deltaRO , Calphaf , CalphaR, t 0 , dt , tControl , Fy ext , steerType , KpOf f , 
KdOff, ... 

KpHead, KdHead, KiOf f , KiHead) ; 

.. .... ... 

for time = tspan 
[dx (i, :) , Fyf (i, :) , FyR (i, :) , alphaf (i, : ) , alphaR (i, :) , beta (i, :) , . . 
deltaf (i, :) , deltaR (i, : } , offError (i, :) , headError (i, :) , FyExt (i, :) , 

dynamicsBasicLinear (time, x (i, :) , options, u, a, b, M, Izz, W, 
deltaf0, . . . 

deltaRO, Calphaf, CalphaR, t0, dt, tControl, Fy ext, steerType, 
KpOff, KdOff, . . . 

KpHead, KdHead, KiOf f , KiHead) ; 

i = i + 1; 
end 

v. :.? i.,. L. :.? ~. C:.. U_ C:. :.) C :> i_•. L. :> C :? C:. _:? _ C :.? C:. :> i:~ L :> :> C:. :> C:, :.~ _ :? i_~. •::. C. :.~ v. C:. C~ :> C:, :? 
'Q ' . .. :) ~~. .. O ' . .. 'O '.. .. 7 '.. .. ':~ .. .. O '.. .. :7 .. .. O '.. .. ./ '.. 't: ':J ~.. .. .J .. ~i: './ .. .. O ,, . i. '.. .. is 'O '.. i',\, ':) '.. <. :~ '.. t; .. .. 

l 

l~ l: /~ .. ~~ Ci _ \~ l: /~ \~ 1, /~ l~ /„ l; /~ ~.~ 1, ~~ 1, './,. ~ l: ~ \.~ 1, /. \~ l \. C,. _ ~.~ 1, /. l.~ /~ ~ ~~ l,. \.~ l: /„ \~ 1, ./~ ~. l; 
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ay = (dx( : ,2) + u * x( : ,l) ) / g; 

(~: i'V ~.. ~ .ti 

J 

K = Wf /Calphaf - WR/CalphaR; 
-r 
V~ 

C:, + .. Y ~} 

dfPart = (b/L) - (WR/CalphaR) * (u~2/ (L*g) ) ; 
dRPart = (a/L) + (Wf/Calphaf) * (u~2/ (L*g) ) ; 
thPart = (Wf/Calphaf) * (b/L) + (WR/CalphaR) * (a/L) ; 

numv = u* (dfPart*deltaf + dRPart*deltaR + thPart*theta) ; 

_ // -t-
\? ~ ~~ ,J iii ~.~. .L, i.~ J 

numr = (u/L) * ( (deltaf - deltaR) + K*theta) ; 

den = 1 + K*u~2/ (L*g) ; 

..c 

rss = (numr / den) * 180/pi; 
vss = numv / den; 
beta ss = (vss / u) * 180/pi; 

_% 1 

for n=l:length(R) 
dss (n) _ ( (L/R (n) ) + K* (ay (n) - theta) ) * 180/pi; 

end 

if steerType == 1 
dss = -dss; 

end 

".~ 3.~ ~ : ._ C:~ ~,. w.) C~. i i :. _ ~.. .. ij. _~. ~.~ ~.:; :.. la n ~ ,.. f~ n :~ 1: :.: ~ .. t.i 

betaSS = (Wf/Calphaf) *theta; 
betaSS = betaSS * l80/pi; 

deltaRSS = K * theta; 
deltaRSS = deltaRSS * 180/pi; 

f': i' V _ / 
.- \~J -•~ \ i i ~ ...r  ._. ~ 1..~ ~t ~ lw ~_ > • T  (`'• d {._. /`C .L ~~~ t a i..~ ~.. ~•.l \~ 1. 

r = x ( : , 1) * 180/pi; 
beta = beta * 180/pi; 
alphaf = alphaf * 18 0 /pi ; 
alphaR = alphaR * l80/pi; 
deltaf = deltaf * l80/pi; 
deltaR = deltaR * 180/pi; 
psi = x ( : , 3) * 180/pi; 
headError = headError * 180/pi; 
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C.2 Linear Simulation dynamics code: dynamicsBasicLinear.m 

.. ... 1 ~. _ ~ i ~ ~ _ _ \... ~ _ f~.% ..'~ ~ t .. L ~~ ~ 1 (  :. _ ! •i ~ L i _ L.. i...~ .~ ~/t l~ _ ~ _ i L : ~/ ~... _ `.• ~. _ :a Sr i' '.,,~ .... .'1 • ~ +_. ~ +...~ ~ 1~..~ ~ , J ~. 1 ~... 

_ .r (3.:..\ +•..0 l....... , 'v•. ,. ~ _f.. ... ~: D~~I .... ..[.. ..... ~.i l.. )..y '~i..~.. ..... +_. t. l~.l :_\ _ 1. ..._ (~ ... ~ .L., o 

function [dx, Fyf , FyR, alphaf , alphaR, beta, deltaf , deltaR, of fError, . . . 
headError, FyExt, oErrpot] ... 
= dynamicsBasicLinear(time, x, options, u, a, b, M, Izz, W, 

deltaf0, . . . 
deltaRO, Calphaf, CalphaR, t0, dt, tControl, Fy ext, steerType, ... 
Kpof f , Kdof f , KpHead, KdHead, Kiof f , KiHead) 

_ c. ~~. c. ~~. c. _ c;~. c. c, c;,. c, c. _ _ L. :> Q :> L`.. O ~~. •~. CJ_. :.~ ~~ • ~. C. :.l :.~ :> J <~. •:.. C:. :> L. J L. :.~ :> _ :.~ :? O _ ... L. :.~ i:~. •... L 
~l: 

.~ 
~.. ~C: 

.~ 
~.. i; ~:) ~.. 4 ~:~ ~. ~: ~:) ~~. .. 

.~ 
~.. .. Q ~~. .: ~:) ~.. l: ~O ~.. .. ) ~.. C. 

.~ 
~.. tel: 

.~ 
~.. tel: `O ~.. ~V 

.~ 
~~. ., v t: ~:) ~~. l Q 

(: 1 ! •\ /' (- •1 l' (y \ !. (V 41 / C: 'l !~ (V ` r. (~ '\ 1. C: 41 ! (; \ !. \ /- (- :\ !' C: '1 ! (y \ / (,~ \ ! •\ ~~ (: tl ;., C /, _ t.. C; /. ~~ 1, i,. ~_ ~;. /, l: /, \., l l,. ./. \; C, 1, /, ~., ~: /, ;, 1.,. /. ~: C;, /, l /, ;., l~ ./. ~. ~:. /. :' ~', ~: Ct. 

C.: + C. _: + C. O C.: + C.: + C. '+ Q.:• C.: + ^.: + C. v C_.:• C.: + C.: + C.: + C_.: + C.: + : + ,~. 
'~~ '.~ 'i~ '"~ ~ '~~ "i~ : mil :•'7 '7 'l 7 :'l ~ 1 :~l CJ ~(~ ~ ~. ~:J ~i (~ \. ~:J :- i ~~ ♦: ~:J / ♦. ~:J / ♦. ~V '.J ♦: ~:J './ \: ~:I '/ ♦: :J ~( i \~ ~:J / ~. ~:J r i ♦: ~:J / \\. ~:J ! i ~: ~:J 'J _ ♦: ~:J '.r ♦: ~:J (~ C~ ~:I './ 

R / 

(~ :, , (: 4, r' (~ :, r. ~. ~\ ,' C: ; r C: ~, ,'. (V :, f, C: ! " - ; ~~ ! (~ - !' C: , r C: ~, r C: :, ,-. (; , r. (; :, ,. (. \ ~; ~, C: /, ~. l: /, l;. /. l ./, _ ~, l ; , /. ~.. 1, 1, -./, _ ~, l,. C,. /, l: /. ;.~ C /. ~.; l /, ~: 1, .i, ;, l _ ~.~ 1, ~, r. ~~ l,. J _ ~C 'J .. "iJ ":J .. _ "C ':~ ~ <J J .. _ "~~ 'J .. ~C ':: .. _ "C .. ., .. .. _ ~~~ .. .. _ .. .. .. _ "C3 J ~ ~<~ J .. ~~J "J .. _ "C .. ~ _ "C ~:J "v ~J .. _ 

~.~ l: ./. ~. C: i, v l: ./, \, 1, /. ~: C;. /. C:. /. \: l,. ~~ l: /, C, /, \~ 1. _ ~., 1, ./. ~. 1, /, ~. C: ,. Cam. /. ~~ C' /, ~.~ l,. / ♦~ l,. 
J .. .. "<:: O "<; -C.` ~ •<:; J ~C 'J .. J .. ~+:; :J ~ .. ., 'J .. _ .. .. .. _ "fJ ... ~+7 .. ., .. .. _ "v ':: .. _ "f3 .. ~ ~(J J ~<: 'J .. (.: .. . 

( J jvd?"'1._~;-~ see ;z~ C~n;~ `~:.1~:~ ,..~r~:.l;jrs 
C; ./. ~: l: ./. ♦; l:. /, ~.~ C:, ./. _ ♦, l;. /, _ ~, 1. /, ~., l:. /. ;. l; ./. _ ~., l; ~.~ l; ./. \., 1. /. ♦_ 1. ♦; 1, /_ ♦, l.~ /. ~.; lam. .i, _ v~ li.  ./. ~.. ~t /. 

_ .. "J .. ~C; ./ .. _ ~+:; ':J .. "C 'J .. •<'.; J "C 'J .. _ "<; .. ~+:; .. ~ "+:3 'J .. _ ~~ .. ~ ., .. .. _ ~<'J ./ ., J "C ':: .. _ "C J .. "<:: 'J .. _ ~C ':: 

.! 

offError = x(5) (~ l~, =ffT`r~:~~k i; sJi~~Y'._~~ .~, _oY' ~~_or~ / '',' _ ~ 

headError = x (3) ; °; :pie ~~.:A. Y•. ~ .~. ~ ~~~ ~~ A ._~ _~ ~.. :~_ 

offInt = x(6) ; 
headInt = x (7) ; 

1. ' •y /'t • •~\ !•~ 'F•• r .~ ~ (-~ y 'r  t .r  _ •'YYl f~`c 

,.:; ~' .~ l: .~ ~ _. ~' ~.:.: ~.~ ~.._ 7 ~ r 7 ~-~i ~. ~~I ~y ?: Z c~. ~"t ~ T^ ~ r w. ,.r _ i C ̂ : 1:.~ _ ~ } r .:J ~ _ a.._ ~T:-- ,... _ '~ >.. ~ i ~. .._ l.. 

(: ~ •~ ~-: - i Y~ ! \ V • ' ~ ! J-- -i- ,.. ; ~, 1 ; y1 \ ,'~-: ~ iJ ~ , Y-, ,'. r-\ Y\ 
., 1 _ G~, _ .. _'.~ ~~ t:.J H.t .~" 1 ,  L: '..J ~.. i~ °.,i ~ ` ._ ; 1 \.t ~.. .... t.% 1 . ~~a ~'1 ] _ ~ <~1 !.., i..i ~. 1 _ 

if time < 0.01 
oErrpot = u * x (3) + x (2) ; `~ ~ f~„~e ~~ s d~ ! ::; 

else 
oErrpot = u * x (3) + x (2) ; 
hErrpot = x (1) ; 

end 

!:: 
Q 

C,: L' ~' ~ } \ "+ -1- r'\ Y♦ rti .^ .~ ~- _ / y- S- y-  !' 'Y r~ -7- ` r'~ Y• r-\ \ ~^ ~ Y\ \ r-\ t 
.. ~:~ ~ ~... ~-' 1... ~ 1... ~• l~ ~ ! •.ti i ~. '.~ 1 ~... ~`: +•• ~ .L ,  i~ ~ ~~ t .~] i r " 

.J - ' t: r L_ ~i1 , .._ \.J _ `~ ..... t.:' `. 1... _._. 1 _ _~ ~.~' ~.:. ~ ^ ~>.J~ `, +.~...' ~...., :..:r ~ ti > ~. l.. l.. i .t `.• 

if time < t0 
deltaf = 0; 
deltaR = 0; 
FyExt = 0; 

elseif (time >= t0 & time < tControl) 
deltaf = deltaf 0 ; 
deltaR = deltaRO; 
FyExt = Fy ext; 

else 



www.manaraa.com

111 

G•• ~- ~ 7 -~ •~- ~,~ .~ - ~~ i ~-.. ~- lam. ••• ~~ `"" ... '1 G-' " 7 T.-.~ ~r  v E 1  ~ /~ _ L ,  L\ ~ 1 L~ ~ ~ ~~ .~ !~ f~l L 
~. _ 

i f steerType == 0 " ~~':r. ~~~ Y~~~:. ~~ '~ ~:~ r ..; \.: 
deltaf = controllerLinear (offError, oErrpot, offInt, headError, 

hErrpot , headlnt , Kpof f , Kdof f , KiOf f , KpHead, KdHead, KiHead, steerType) ; 
deltaR = deltaRO; 

else _ ~:~:~~,~i ~~ s ~ e~~ ~~ 
deltaf = deltaf 0 ; 
deltaR = controllerLinear(offError, oErrpot, offInt, headError, 

hErrpot , headInt , Kpof f , Kdof f , KiOf f , KpHead, KdHead, KiHead, steerType) ; 
end 
FyExt = Fy ext; 

end 

alphaf = (x (2) + a * x (1) ) / u - deltaf ; 
alphaR = (x (2) - b * x (1) ) / u - deltaR; 
beta = x (2 } / u; 

e.~erm.~ne ~r~-:errs_ f~~r~:::e 
Fyf = - Calphaf * alphaf ; 
FyR = -CalphaR * alphaR; 

^) 
~y~ 

\: ~:J ~.J ~~ \. ~:J ~J \: "CJ ~J \~ ~:I J •.~ "\i ":J J :~ ♦: .~ ~J •~~ \+ ":J ~J ~\': ":J ~J ♦: ~. ~J \': ~:J ~i \~ ~:J .J \: ~:J ~l \: .i ~J l~ ":) ~J \. ~:J J \. .~ J 

L. :.~ C:. :? i:~ ~~ :) C:. :_` C:. :> L. :.? ~~. C:. :.? is C:. :> _ C. :.? G. C? __ O :> C. :.? C:, :> C. :.~ C. L? i; C: :> C, 
i;; ~.~ .. i'; -:l ~.. .. 

.~ 
.. ~: ~:) ~ ~: ~:) ~.. tel: -.i .. .. 

.~ 
~.. .. :J ~ "l: ~.~ ,. .. .i .. "C: ~:J ~ "~. ~:) ~ :) -t ~:~ ~ 7 ~ . 

' ~ '"i "S~ '~~ ~~~ r~ ~~~ 'i . '~~ •:~ •5~ '~i :l mil'.• .i -~i : 1 ♦: ":1 J •.~ ♦: ~:J J :~ ♦: v ~J \: ":J .J •~3 \: ~.J J \: ":J ~J \: ":J ~J ~ ~ \: ~.J "~i "~. .~ ~J \. .. ~i "\, .~ J ~C~ ~:J ~J \: ":1 ~J i'• ~:l "~i ♦: ":J J ♦: ":J 

_ L, L ~•. L, _ C:_ _ L. L. •~. L ~,. L L, U _ L. C~ •~. U L. :.~ L, C~ L. O C~. L, J C. O :? U _ ;? :? C; U _ :? :.~ 
i~ 

dx (1) _ (Fyf * a - FyR * b) / Izz; 
dx (2) _ (Fyf + FyR + FyExt) / M - u * x (1) ; 
dx (3) = x (1) ; 
dx(4) = u - x(2) * x(3) ; 

dx (6) = x (5) ; 
dx (7) = x (3) ; 

dx - dx 
' ~ '>• _' ! r - Y` C'' r -~ -c :~ 

.~ 
~ ♦ ~~ /~ ' f~f !'} Y` '~" (~ r' _ ~ _ ( \ \i ( jR 
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C.3 Linear Controller PID controller code: controllerLinear.m 

'~ , ~ ♦ ~~ r`. ♦ ~~~ 'v \ r. '~ \ r, Y• Y~ /'". -L— — \ r' Y~ —~ -1— 1  rti 

_, 
_~~ ~:. .. . a ~:~ss In .~-_~ o_ ~~Tz ~~:~?~ er ~~o ~ aid ~. ~e ~z~~~ ins: er -~:~- r :end ~ : . Uzi.: t ~e 

ii
~'~ T r -~ ♦ / rti i` ~ r'~ ;~ / /'~ 'v \ rti -~. "'_ ~ ♦ t '~ 

function steerAngle = controllerLinear(offError, oErrpot, offInt, 
headError , hErrpot , headInt , Kpoff , KdOf f , KiOf f , KpHead, KdHead, KiHead, 
type) ; 

~•%. :•~' r - ~ Y` r`: ~c \ i' / — Y~ ~ \ ~~ 1— r\  \ \ —~ - mac ~. ~ r -~ Y ` 1 '~ ~ 

switch (type) 
case 0 

steerAngle = -(Kpoff*offError + KpHead*headError + Kdoff*oErrpot + 
KdHead*hErrpot + KiOff*offInt + KiHead*headInt); 

case l 
steerAngle = (Kpoff*offError + KpHead*headError + Kdoff*oErrpot + 

KdHead*hErrpot + Kpoff*offInt + KiHead*headInt); 
end 

steerAngle = steerAngle * pi/180; 
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C.4 Transfer function model code: transferFunctionFinal.m 

`~'; 

C1C 

Clear all 

(': '\ 1 I (~: ~\ ~' (: "\ '\ r. (.. '\ 1 l (~ '\ '\ 1. (: '\ .`  (~: '\ '\ ! (: ~\ ('. '\ •\ (~: ~ 1 (: ~ (~: '\ 1 r (': '\ '\ !- (: ~ 1 I (~: '\ 1 r (.: .\ ♦,\ !. (.: . Y:. C J, C:, J, ~~ C J, ir ;. C i, ♦~. C _ J, ~' :i, ~~ C J, \. :J, _ \ C _ :J_ _ ♦~ C.. :J, ~r C:, :J. ♦ C.. i, ♦~ C.. i, ♦~ C._ 1, \ C.. i, ♦: J ~: C., 
i ~ 'i \ _ , i  . \ .i, _s~ .\ , it  v ..\ .i~ . .~ -' -i.. •♦ ~ 'i• i ~ 'i'. ~ ; -i. -i. -~ 'i , :i .i . "\ .i, .:i .i, -~ 'i ,  i '~ !. ` v C. ~:J 'J .. ♦. ~:J 'J .. ♦. '.J J ~. C. ~:J J ~• ♦. ~:I .J .. C. ~:l .J .. C. ~:l J .. C ~.J ~ v ~:J -.J `• ~.J J .. .. J .. ♦: .. J _ \. ~:J -.J .. C. .. 'J _ \: .. J v C ~:J .J .. .. 

`~Y 
/'\ l~l /'Y ..7 .`~, 

r1 
.l l /\ ! ~ 7 

.. A  ~ •^\ ' f  ! y •Y ~ ~~ 

, V ~..~ ... .w. ~' .».. ~,.. \i ~ ~.. ~ ~+ ~ 
777"' 

~ ~..(.. ~ : \.- ~_. ~ i .... ~ _ 

C.: ~_ C.: ~ - G : ~ G ~~ G, : ~ C.: ~ C, : ~ C, : ~ -_ C. O C.: ~ C, : ~_ C, : ~ C, : ~ t:, : ~_ _ C, : ~_ C, : ~ - G.: ~ 
SCI '.J \. SCI ./ ~\~ .r J ~~ ♦: ~:7 J ~~~ ♦. ~'.I J :~ ♦: ~'.J '.J ~~~ ♦: ~:J ( i \: ~'.J ! i ~~.~ \. ~.J i ♦. .. ~i \: .. J \: ~C7 i ~\: ~'.7 ! i \: ~'.J '.J \: ~'.J '.J ♦: ~.7 -.J ~\. ~:J 'J 

rJ 

L = 11.5; 
g = 32.2; 
W = 34000; 
M = W / g; 

Wf_ratio = 0 . 8 0 ; 
Wr ratio = 1 - Wf ratio; 
a = L * (1 - Wf ratio) ; 
b = L * (1 - Wr ratio) ; 
Wf = W * Wf ratio ; 
WR = W * Wr_ratio; 
Izz = (M/4) * (a + b) ~2 ; 

u_mph = l0; 
u = u mph * 5280/3600; 

J 

.J ~ ...~ : C~ .(~ i 

!'7T_~ 1 _~ ,l 
l 

y 

r• 7 - ~ \ 

' ~ ~~ 

c. .;~ 
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:~ ♦: C7 '.J \: ~:J J ♦, ~C7 "J ♦. ~C7 J \. C7 ~i \. .7 J ~~~ ♦, CI J \: .. J :~ \, ~C7 ~• .r .r .. :l ':. ~• :l ~- :l ~ ~ (7 ~ ~• ~ :1 ! i \. -J ♦, ~! J \; SCI ( J C~ C7 ( J \. SCI '.J ♦. ~CI r(J ♦, ~C7 (J \: ICJ ~J \. ~CJ -.J \, 

cornerCoeffFront = 0.06; 
cornerCoeffRear = 0.06; 
Calphaf deg = cornerCoeffFront * Wf ; 
CalphaR deg = cornerCoeffRear * WR; 

~.~ 7 

~. .. ./ t' 7 L L.- I. 

y 

./ 

♦.~ .i: 
.J 

CalphaR = CalphaR_deg * 180/pi * 2; 
Calphaf = Calphaf deg * 180/pi * 2; 

K = Wf /Calphaf - WR/CalphaR; 
uCrit = sgrt (L*g/abs (K)) * 3600/5280; 

\Y _ 
~'{ 

~.J .~ ~i 7 C..0 ~ . ~.{ 
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steerType = 1; 
steerAngle = 0; 

.w. .~. .. .. ... .. ... F :\... f .... . ....:.: ~ ~~:• :~ \..:: F .~. 

:J_ -;; 
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r: 

if steerType == 0 
deltaf_deg = steerAngle; 
deltaR deg = 0; 

else 
deltaf_deg = 0; 
deltaR deg = -steerAngle; 

end 

deltaf0 = deltaf deg * pi/180; 

deltaRO = deltaR deg * pi/180; .. 
i..0 ..F.. iJ i... ... ~ ~:l ~ .i. .... ~) .. .1 '::.~ ._,% ..1.: w, ~_.'~~ : ~..1. ̀ ..:.~.. _ (~ .:mot ..... ~,`. \.. V ri.. 

r` 

:) 

KpOff = 3.7; 
KdOff = 1.3; 
KiOff = 0.05; 

KpHead = 74.0; 
KdHead = 0.0; 
KiHead = 0.0; 

t = 0.0:0.01:10.0; 

thetaDeg = 5; 
theta = thetaDeg * pi/180; ~ ~`.~..:a~~ : .....:r. .... ._.::~..~. ~~.~~~ 

c, 

r:J 

~f~, 

.c ..~ f 

~ ~ f": ~♦ '\ i f: ~♦ ~ r f~; '♦ ~. f~; .♦ ~. f.; ~♦ ~ f'; '\ ~ i f-: -♦ ~ r f -; '♦ ~ ~ f': '♦ ~ i f': '♦ `'\ i (~; '♦ ~ ~ f~: ~♦ '\ r f': '♦ ~ f': ~♦ -♦ ~ f'; •♦ ~ ~. f: ~ f': i f: - ;~ r 
C i. t.: l >. ~.: C i_ ~~ C:, >_ \!;. C:, >. ~'. C:, /. ~ C >. \~ l i, ~. C i, \r C„ /. ♦. i, iy  l,. i, ~: C,, i. i C.. 1, ~' l.. )_ ~,: C.. /, \~. 4, i, ~.. J, ~ >, 
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\. CJ ~./ \. ~:J / \: '.J ./ ♦. ~:J ./ \. ~:I / \: '.J / \: ~:J / \' ~:J fi _ \, ~:J / \: ~:J / C: ~:J ~i \~ :J ./ ♦: ~:J ./ \: ~:J _/ \: ./ ./ 

al = (Calphaf + CalphaR) / (M*u) ; 
a2 = (M*u~2 + Calphaf *a - CalphaR*b) / (M*u) ; 
a3 = Calphaf / M; 
a4 = CalphaR / M; 
bl = (Calphaf *a - CalphaR*b} / (Izz*u) ; 
b2 = (Calphaf *a~2 + CalphaR*b~2) / (Izz*u) ; 
b3 = (Calphaf * a) / Izz; 
b4 = - (CalphaR * b) / Izz ; 

f (~; ~ r f'; ~♦ ~ r ('; '~ ~ ~ f': ~♦ .` f: ~~ ~ t:, i, \' C:, i, ~ l., /, \ C., /, \.. ~J, ~. G, i, 
'l, \ '%'. .\ 'i ,  ;~ 'i ,  _1 .i. .~ ./. 

., -./ .. \. ., '.J .. \. „ / .. \. „ / .. 1. .: / .. \. ., / .. 

f.: ~ C:, Ci, f. •, \:.. l:, Vii. f.' ~~. C:, CJ. f. ~. ~ C:. ~J. f. ~, ~~. C:. ~J. ~'. ~~. C: .;~ .i., ...\ .i.. ...~ .i, .;` .i.. ";; .i.. ..~ 

-♦ ;~ i \: i, f': ~~ \ •\ ~ C,, i, (: ~♦ \. ~ ~ C., /, (~; ~ ~-\ \~ ~ f: / ~♦ ~'\ r ~♦ \- . /, \:. `~ ~ / r -; ' \.\ i i, 
f., 

\.. C:, :/, 
f.. \.\ f': ~\ ;~ r. \~ :i, \' J, 
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^1 .i, 
l: v: ./ 
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~ 
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C:,%. f. •, 
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"i 
Vii_ ~~_ ~:. C:. i. 
'i'. - ~~~ 'i'. 

~ . ~:. .•:♦ : i. .i, f. ~. ~ .;~ C:. Vii. ~'. ~ .i.. "; C:, Vii.  f. ~, i~. C:, Vii. f-'_ ~:. .i.. .':i , i. ; C:. Vii. ~'. 'i, 
./ 

~'. C: .:` Vii_ f.: 
,i., 
../ 

~.:; 
Vii,  r .: 
,i.. ':; 
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o ; :~ l ~ ~ ,~> <:, -t- -~' ~-' c" 'r te •._ - ~ - cy ' i-

x = pi/180; 

ml = -x*b4; 
m2 = -x*a4; 
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m3 = 2*al + b2; 
m4 = x*a4*bl - 2*x*al*b4; 

m5 = -x*al*a4 - x*a4*b2 - x*b4*u + x*a2*b4; 

m6 = 2*al*b2 - a2*bl + a1~2; 

m7 = x*al*a4*bl - x*a1~2*b4; 
m8 = -x*al*a4*b2 + x*a4*bl*u - 2*x*al*b4*u + x*al*a2*b4; 

m9 = a1~2*b2 - al*a2*bl; 

m10 = x*al*a4*bl*u - x*a1~2*b4*u; 

DD6 = KdHead*ml + 
DD5 = KdHead*m4 + 
DD4 = KpHead*m4 + 
+ KpOff*m5 + m9; 
DD3 = KiHead*m4 + 
DD2 = KiHead*m7 + 
DD1 = KiOff*m10; 

zl = al + b2; 
z2 = -x*al*b4; 
z3 = al*b2 - bl*u; 
z4 = -bl*u*al; 

KdOf f *m2 + m3 ; 
KpHead*ml + KpOf f *m2 + KdOf f *m5 + m6 ; 
KiHead*ml + KdHead*m7 + KiOff*m2 + KdOff*m8 

KpHead*m7 + KdOff*m10 + KpOff*m8 + KiOff*m5; 
KpOff*m10 + KiOff*m8; 

~ A .... l~ ~..: .... 
~.. .. z.. .i ,~ 

NN3 = KdHead*ml + zl; 
NN2 = KdHead*z2 + KpHead*ml + z3; 
NNl = KpHead*z2 + KiHead*ml + z4; 
NNO = KiHead*z2; 

. '~ ..... .;.. :..i .. .i ~... • ~ ': 

numTh = g* [ 1 NN3 NN2 NNl NNO ] ; 
denTh = [1 DD6 DD5 DD4 DD3 DD2 DDl]; 

Th = t f (numTh , denTh) ; 
rootsDen = roots (denTh) ; 
[YTh, tTh] = step (theta*Th, t ) ; 

N4 = KdHead*ml 
N3 = KdHead*m4 
N2 = KdHead*m7 
Nl = KpHead*m7 
NO = KiHead*m7; 

r i r ~~ 

+ m3 ; 
+ KpHead*ml 
+ KpHead*m4 
+ KiHead*m4; 

+ m6; 
+ KiHead*ml 

numTh2 = [ 1 N4 N3 N2 Nl NO ] ; 
denTh2 = [1 DD6 DD5 DD4 DD3 DD2 DDl]; 

Th2 = t f (numTh2 , denTh2) ; 
rootsDen2 = roots(denTh2); 
[YTh2, tTh2] = impulse (YO*Th2, t) ; 

YThAll = YTh + YTh2; 

+ m9; 
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TKpHead = t f ( [ml m4 m7 0 0 ] , . . . 
[ 1 DD6 (DD5 -KpHead*ml) (DD4 -KpHead*m4) (DD3 -KpHead*m7) DD2 DDl ] ) ; 

TKiHead = t f ( [ml m4 m7 0 ] , . . . 
[ 1 DD6 DD5 (DD4 -KiHead*ml) (DD3 -KiHead*m4) (DD2 -KiHead*m7) DD1 ] } ; 

TKdHead = tf ( [ml m4 m7 0 0 0 ] . . . 
[ 1 (DD6 -KdHead*ml) (DD5 -KdHead*m4) (DD4 -KdHead*m7) DD3 DD2 DD1 ] ) ; 

TKpOff = tf ( [m2 m5 m8 m10 0] , . . . 
[1 DD6 (DD5-KpOff*m2) (DD4-KpOff*m5) (DD3-KpOff*m8) (DD2-KpOff*m10) 

DDl] ) ; 
TKiOff = tf ( [m2 m5 m8 ml0] , . . . 

[1 DD6 DD5 (DD4-KiOf f *m2) (DD3 -KiOf f *m5) (DD2 -KiOf f *m8) 0] ) ; 
TKdOff = tf ( [m2 m5 m8 m10 0 0] , . . . 

[1 (DD6-KdOff*m2) (DD5-KdOff*m5) (DD4-KdOff*m8) (DD3-KdOff*m10) DD2 
DDl] ) ; 
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C.5 Transfer function codes for vehicle parameter changes 

The main difference between the code presented in Section C.4 and the code for the vehicle 

parameter changes was the entire code was put in a for loop to run through the desired 

parameter range specified outside the loop. Some variables were indexed in order to create 

an array containing the results for the whole range of parameter values. Because very little 

changes to the code were made, it is unnecessary to show the code for each individual 

parameter change. The code for the varying the weight of the combine is shown below as it 

contained slightly more modifications. In this example, the plotting routine is included and 

the basic setup for all parameter change modifications can be seen. 

':i ':. c: '~ ~:. % 'o ~.. 'c ~~ '.. 'S ~„ .. ., 'b ''. ., 'b '.. ~< '^ '.. c '<i ''. ~ 'b ''. ., 'b '.. ., 'o ' . a ~~ ':. ~; o c '~ ';. ~ 'a ':. '% 'o 

i 

r ~, / -, r -, . ~ r. , , re ~ / r} . , r_ , / r-. , ~/ r. ~` / r~ . ~/ r: '> ~ r. ' r: ,? ~ r: ,. ~ r` ,. / r• .~ 

L = 11.5; 
g = 32.2; 

WBase = 34000; 
WUnitCrop = 60; 
tankCap = 300; 
tankRange = 0.0:0.25:1.00; 

_ ___ l 
":J \~ .._. \.~ `f ..~ elf  ~ ." 1 ~1 { 

J 1 • ~ 

.~. .A 

...:...c i..i `. 1  :. ,. i .. Y ~. t~ ~ 1 

WCrop = WUnitCrop*tankRange*tankCap; rr; ~ir:~x~r_~. -~ ~r:~, * r:;r r~:~_~~~~,~ f ~. < ~ y~ 
J ~ ~.. 

weightRange = WBase + WCrop • ~' ~, ...:~ :.~ ~:: :~ t~r~.:. . •~ ~ ._ ~ ., ._. '~~~ , ... ?~~~' 

. ~ -: . ,. ._ .:.. CGS i t = 0 . 0 0 : 0 . 0 l : 0 . 0 4 ; =~: •~̀: : .... ,-::::; ~~. :..~ :i. ;::~ Y : ... :'~i...... ~:: ~:: ~~.::~ ~ ... ._. :i.. :Y~ ~ ~ ..':: o :,.~ ~~ ~, 

m = l; 
for n = weightRange 

W = n; 
M = W / g; 

-, ., 
C1 

~. Sri +~_~ ..,. ~:~ . ~ ~ -- ~ ._. >..~ ~; 3̀

1 ,, 

r~: ~ ~~ 

r: rR r — 
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Y,  _~ .i— \ —_ ! I j.,' ~_` ~ ~:• r~` ~.: Y. ; yr, 1 . r. -r ~ ~~ ~ "'— i~ 
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Y~ 
..~. L,. ..._ L~ .: Z ~ ~. ~ (` _' 1 _ S 7 .r _ ~.:. L". _... L' `.J • V \~ ~. ~...i v .. _ _... .._. u ~ ~ ~• ., l Y ~ ._ i~ 1_" ~..: ~. ~ '~ `.l , 

W f ratio = 0 . 8 0 - C G S h i f t (m) ry; s ,J ~:..... ~ Y;. ~~:: ~~..a. ~ ._ .Y' .~. : -~ :.~ .;... .:. ~ ' :~:~ ~ ,: ; Y. .~.. 
_ ~ .. .: ... C; ~ ~ .3.. j. t.. 

Wr ratio = 1 - Wf ratio; :, ~Y~__..~:~~ ~~ ~~: ~~. ;:~~ ~.<~_z ~~^<<r;~ J 

a = L * 1 - W f ratio _ ~.:~.. ._ ~ ~ ~ .. ~: ~ ~~. ~~~:~ .~ :~: .~.. :_r.... :.. .... _.> >..: _. ~. ... _ •; 
,_. ,.. b = L * 1 - W r ratio .. : ~.:i.. ~ .t:: ...:~..; ~: • :: ;: ~. ~~ ;_.: :~:~ :r.: ~::::: :~ ~ ~ . :... .... •~:: , 
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Wf = W * Wf_ratio; 
WR = W * Wr_ratio; 
Izz = (M/4) * (a + b) ~2 ; 

u_mph = 10; 
u = u mph * 5280/3600; 

/ r~ , / r: " r r:  , (- !: ~ (' (: C ~ i.. \./ CJ J. \. CJ i, \.~ C.~, ./. ~~ C r ./" 

"<:: 'J .. _ "G J "C 'v "C ~J "~:: 'J 
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~~J 
.v 

~ 
~.~ C ~ 
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/. .♦ 
J. \.~ 

"U ~\/ .. 
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C ~. ./_ 

_ "C 

\ \~ \ , — \.: ~J - `/ 1. ~.+ 4.i \. 

~.; 1,  .~" ~.~ lJ ./, ♦~ 1, i. ~. l,. ./, ~~ 1, ./, ~.~ l ./. ~" l;. /. ~, 1, 1, /" _ ~~ C,. /" ~. l,. /. \.~ 1, /" ~.~ C.: /. \., lJ / 1, /, ~, l,. i, \ l /" C' ~. 
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cornerCoeffFront = 0.06; 
cornerCoeffRear = 0.06; 
Calphaf deg = cornerCoeffFront * Wf ; 
CalphaR deg = cornerCoeffRear * WR; 

Calphaf deg = 16 3 2 ; 
CalphaR_deg = 408; 

.~, ~- i r 

r: ` 

CalphaR = CalphaR deg * l80/pi * 2; 
Calphaf = Calphaf deg * 18 0 /pi * 2 ; 

K = Wf /Calphaf - WR/CalphaR; 
uCrit = sgrt (L*g . /abs (K) ) ; 

[ '\ Y•. i•~ Y` r It -•, /•, i•~ f)  •~ r'v t 7 ^ Y'`. Y': 1 / t r l 1 

~:_ - ; 
'.J .~. ~ ti i ' \/C v `,~. 

;•_.•i ~ , 

r': •, 
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:i, i~ C:, J, ~ C:, /, l., /, ~~. C:, /_ ♦. . C, i, ~~ /, \~ C:, :i_ ~~ C:, :/, ~ i, is :/, \'. C ~~. ~~ ~~. ~:, l., J. ~' J, \~ C., /" ~ l., /. ~.. C., :i, \'. /, 

Q.:• :~ C:.:, C.:~ C. ~: - C_.:• Q.:• C.:, C. :~ p C. :~ C. :~ C. :• Q" :~ _ C. _:~ C.:~ C.:• ~~ 

steerType = l; 
steerAngle = 0; 

if steerType == 0 
deltaf deg = steerAngle; 
deltaR deg = 0; 

else 

c`` : frr;n~ s~ ee~- f ~i : '~~~:ir s ;~: er ._. 
... .r. .. . J L.c. :.. ... 

..• 
~ _ 

deltaf deg = 0; 
deltaR deg = -steerAngle; 

end 

~, 

r= 

_ ~ _ ._ - -, ~:} :~ :r r: ~. ;-~._ ~s.~ 

' .. 

deltaf 0 = deltaf deg * pi/18 0 • :, ~ ~.~e._~ s .re.... i _ ~d=~ ;~ E' ~~-~ ~ nd 

deltaRO = deltaR deg * pi/180; ~~:~ ... ~ ~~:F~.~~ , :; ~~:-~~-; , , ~:~r~ r•,r: ,:~~ 
_ .r. . ..: .~ ,.c \.:.i ,.c 

-, 
l.% 

KpOff = 3.7; 
Kd0 f f = 1.3 ; 
KiOff = 0.05; 

KpHead = 74.0; 
KdHead = 0.0; 
KiHead = 0.0; 

=: -<., 
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t = 0.0.0.01.10 • i ~ ~ r ~ ~~ ~~ ~ , ~? .. ~-~• - ~ ~ ' ~^ '~° l-~ ~ " '' 

t h e t aD e g = 5 • `' .. ° r -A _. _, (( , jE ~ ., ,•. .a. Y•: ' t~: ~:! _~ ~_; ~. 

theta = thetaDeg * pi / 18 0 • ~ ~` .~.. ~~~ ~~ .....~~. .... ._.::~::. ~~. ~ ::' ~~:~:: 
Fy ext = W*sin (theta) ~~ ~ -- 

t 

- ' ^J >~..~ ~ C~ 
~~ 

/-- 

1' .._. `., ~ ~..• .L `.. ~.:. i... ~.. • ~. ~ it `J v ' ! 'a 

YO = 10; 

c ~~. c_ ~:. c. •:; c o c~ r~ :> c. :.? c. :., c, :> c. c? c. o • . c c? c. a ~•. c, o c :.? c c, ~> c, c? • . c. o • . c, a c~. • . a _ .. - - •;. _ _~ ~. , ~ ~ 'o '". '<~ ~~ is ':7 .. .+ .. .. ., .. .. % 'O ~ ') . 'o o 
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plots = 1; 
stepResp = 0; 
poleZero = 0; 
rootLocus = 0; 
impResp = 0; 
stepImpResp = 0; 
TotalResp = 1; 
sysRoots = 0; 
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"♦ 'i• Sj ~:, _i, ., -i, .~ 'i ,  -~♦ 'i• ':, .i. '., , i  ~ , i, :, 'i. -:, 'i• .~ 'i• . ~, 'i• .:~ •i.. . .~ _5. .~ 'i ,  ~ -i. .;~ .i~ ~ .i.. ..:~ 

al = (Calphaf + CalphaR) / (M*u) ; 
a2 = (M*u~2 + Calphaf *a - CalphaR*b) / (M*u) ; 
a3 = Calphaf / M; 
a4 = CalphaR / M; 
bl = (Calphaf *a - CalphaR*b) / (Izz*u) ; 
b2 = (Calphaf*a~2 + CalphaR*b~2} / (Izz*u) ; 
b3 = (Calphaf * a) / Izz; 
b4 = - (CalphaR * b) / Izz ; 

_ _ ',?; _ _ 
•i~ 'i '~i •i '~, 'i 'i '~, ~. .+ ri ~: .. / ~, ":J ~/ \: ":J / \+ CJ / l~ ":l / ♦: ":J C~ \+ .. / _ \+ ":J ~~ \. .. / ~: ":J / \: ":I / ♦~ ":J -/ ♦, ":J ri ♦. ":J ri ♦, ":J / \; ./ "r~ ~: ":J / i \~ 

c o c o c o c.~ •:;. c. ;> c. ~~ <; c? c :.? c. c? c, ~~ r~ c; c• c. c? c. c? c. c? ,_• c• ~? _ :.? _ c. c? ~.. c. ~? :;. :.? _ c, c? . ice .`^ .`~ .`~ 
i~ 

. ice . ice .`~ `~ 

7 .. 7 "l: ~ .. \, 7 .. 7 ., 7 .. .+ 7 .. "li Q .. "\. \/ .. .. 7 .. 7 .. \. 7  .. .. 7 .. .+ 7 .. ., ' 7 .. \+ ' 7 .. .+ 7 li 7 .. .+ ♦/ .. 

x = pl/180; 

ml = -x*b4; 
m2 = -x*a4; 
m3 = 2*al + b2; 
m4 = x*a4*bl - 2*x*al*b4; 
m5 = -x*al*a4 - x*a4*b2 - x*b4*u + x*a2*b4; 
m6 = 2*al*b2 - a2*bl + a1~2; 
m7 = x*al*a4*bl - x*a1~2*b4; 
m8 = -x*al*a4*b2 + x*a4*bl*u - 2*x*al*b4*u + x*al*a2*b4; 
m9 = a1~2*b2 - al*a2*bl; 
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m10 = x*al*a4*bl*u - x*a1~2*b4*u; 

DD6 = KdHead*ml + Kdoff*m2 + m3; 
DD5 = KdHead*m4 + KpHead*ml + Kpoff*m2 + Kdoff*m5 + m6; 
DD4 = KpHead*m4 + KiHead*ml + KdHead*m7 + Kioff*m2 + Kdoff*m8 
+ Kpoff *m5 + m9 ; 
DD3 = KiHead*m4 + KpHead*m7 + Kdoff*m10 + Kpoff*m8 + Kioff*m5; 

DD2 = KiHead*m7 + Kpoff*m10 + Kioff*m8; 
DDl = Kioff*m10; 

.~ 
1. .. ~.~ ~•.. :~ ..~..:.~ ~_i, .. .....E j. l,; ... ~~ ~ .... l.. ~.. .:' f:~. .~.. l.. \....» ~: ,.1.:.7 .~ .3.. .., l .~ .~.. ..-~ .... 

.i 

zl = al + b2; 
z2 = -x*al*b4; 
z3 = al*b2 - bl*u; 
z4 = -bl*u*al; 

NN3 = KdHead*ml + zl; 
NN2 = KdHead*z2 + KpHead*ml + z3; 
NNl = KpHead*z2 + KiHead*ml + z4; 
NNO = KiHead*z2; 

numTh = g* [ 1 NN3 NN2 NN1 NNO ] ; 
denTh = [1 DD6 DD5 DD4 DD3 DD2 DD1]; 

Th = t f (numTh , denTh) ; 
rootsDen ( : , m) = roots (denTh) ; 
[YTh ( : , m) , tTh ( : , m) ] = step (theta*Th, t) ; 

_ ,- ,- 

N4 = KdHead*ml + m3; 
N3 = KdHead*m4 + KpHead*ml + m6; 
N2 = KdHead*m7 + KpHead*m4 + KiHead*ml + m9; 
N1 = KpHead*m7 + KiHead*m4; 
NO = KiHead*m7; 

numTh2 = [ 1 N4 N3 N2 N1 NO ] ; 
denTh2 = [1 DD6 DD5 DD4 DD3 DD2 DD1]; 

Th2 = t f (numTh2 , denTh2) ; 
rootsDen2 (: , m) = roots (denTh2) ; 
[YTh2 ( : , m) , tTh2 ( : , m) ] = impulse (YO*Th2 , t) ; 

YThAl 1 ( : , m) = YTh ( : , m) + YTh2 ( : , m) ; 

~.~ 

TKpHead = t f ( [ml m4 m7 0 0 ] , . . . 
[ 1 DD6 (DD5 -KpHead*ml) (DD4 -KpHead*m4) (DD3 -KpHead*m7) DD2 DD1 ] ) ; 

TKiHead = t f ( [ml m4 m7 0 ] , . . . 
[ 1 DD6 DD5 (DD4 -KiHead*ml) (DD3 -KiHead*m4) (DD2 -KiHead*m7) DDl ] ) ; 

TKdHead = t f ( [ml m4 m7 0 0 0 ] , . . . 
[ 1 (DD6 -KdHead*ml) (DD5 -KdHead*m4) (DD4 -KdHead*m7) DD3 DD2 DDl ] ) ; 
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TKpof f = tf ( [m2 m5 m8 m10 0] , . . . 
[1 DD6 (DD5-Kpoff*m2) (DD4-Kpoff*m5) (DD3-Kpoff*m8) (DD2-Kpoff*m10) 

DDl] ) ; 
TKiof f = tf ([m2 m5 m8 m10] , . . . 

[ 1 DD6 DD5 (DD4 - Kiof f *m2) (DD3 - Kiof f *m5) (DD2 - Kiof f *m8 } 0 ] ) ; 
TKdof f = t f ( [m2 m5 m8 ml 0 0 0 ] , . . . 

[1 (DD6-Kdoff*m2) (DD5-Kdoff*m5) (DD4-Kdoff*m8) (DD3-Kdoff*m10) DD2 
DDl]) ; 

.~~ !\ .r te •~'` ~ ~'~ •~'~ ~~ .~- :% '~~ •i '~~ •'i~ '~~ : mil ~:l :1 .•'7 :'} :'l ~1 `l :J ~i •`.~ ♦: ~:J ~.i 
.~ ~~: ~:J ~~> > ♦: ~:J ~i •`.~ ~~~ ~:J ~~i '~~ ~: ~:J ~ ♦: ~:J ~ '? ~~~ ~:J J ~: ~:J ~i ♦: ~:l ~.~ ~: .. ~~~ ~: ~:) ~i ~'. ~:J ~~ ~: C) ~ ~. ~:J ~~ ♦: ~:J ~.~ ♦: ~:J ~.~ ♦: ~:J ~~ ~. ~:) ~i 

:~ r'~ 
V 

y— 
~ 

i` i ` i'` <~ ~ ~<: ~:i .. .. 
.~ 

.. .. ~:i .. tel: 
.~ 

.. .. ~:~ tel: ~:) ~V ~:) .. .. ~:~ t: ~:) .. ~:) .. :i ti  v C 

if plots 

if poleZero 

figure(1) 
pzmap (theta*Th) 
legend ([num2str (tankRange (m) *100) , = ' ] , ' lo~:~t_~~n' , ' nod-~r,,~T~;~., -r ' ) 

end 

if TotalResp 

figure (2 ) 
plot(tTh, YThAll, [min (t) max(t)] , [0 0] , ' }~: ' ) 
title ( ' ~~ y7~ te~:~ re,~~er_~e : Gr a in tank =ro~~ empty tc .~ ._~l~ i = ' 
xlabel ( ' Y'.:i.~le ~.e~ ~ ' ) 
ylabel ( ' ~=f'Ira k Ery~e ~' ) 
legend ( ~ L~ ~% ' , ' ~ .J " ~ ' ' •.~ ~.1 ` ' , ~ ~ ~ r:.~ ~ , ' .~ ~. `.} (:.~ ~ , ' 1 'J :' --~ t _ G :.1 ~ , ' ~ ~.~' ~~ .~ ~ ) 

end 

i f rootLocus 

figure (3) 
subplot (311) 
rlocus (TKpHead) 
tit 1 e ( ' ~ : t~: r': ~ ~ :~~.:~..._.. ..., f::: d k a c; ~ _. A_: c ~: t~ ~: ~:~ c~ r..~ ~ ~::~ :~. c .~ :~. ' ) 
legend ( [num2str (tankRange (m) *100) , ' :~: ' ] , ' lc~c....~t:..~.a~~' , ' ~_;:~._. ~r.Y~e~~i~' ) 

subplot (312 ) 
rlocus (TKiHead) 
title ( ' ~e~ ~- .... :1. .A.1 ~~. fi ~~~ ::: .~.~_ ~t: ~ ~~~ ~ >- e: f ' ) 
legend ( [num2str (tankRange (m) *100) , = ' ] , ' lo~~t_~;n' , ' nertr~,~~e,fi ' ) 

subplot (313 ) 
rlocus (TKdHead) 
title ( ' :rene~'al_~ c~. ~ o. ~~~,-,~.. ~ f~.>r ~d=-~ a d' ) 
legend ( [num2str (tankRange (m) *100) , `: ' ] , ' ~..:~:~:~~.t.....t~Y~i. ' , ' r.~ao~~~:~~h:,~~~~~:t' ) 

Vii, 
~!i 
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figure (4 ) 
subplot (311) 
rlocus (TKpoff ) 
tit 1 e ( ' ~ : ;~, r.-. .~ . :Z...-~-- ---. ~~: d ~ ~ :' C; ~ .~ .,.: C; ~ t~. ~: ~:: ~~ .r.~ ~ ~ :~ ~ : ~ _t: ' ) 
legend ( [num2str (tankRange (m) *100) , ' <~ ' ] , ' 1 ~c t.~cn' , ' I-_ ~'_'~t~~_T,nle~t' ) 

subplot (312) 
rlocus (TKioff ) 
title ( ' er~.e :..~~ :~. .:.1e;~ Ret;~: -.:':.; t::7 fc.r. fit; -f ; ) 
legend ( [num2str (tankRange (m) *100) , ' `-.' ] , ' 1-~`-~~tc~~' , 'r~-~~~ ̀ .~~z~e~t' ) 

subplot (313 ) 
rlocus (TKdoff) 
title ( ' '~~ ener:~.l_zec:~ F~ e_ .~c~:~~..~.~ fc;r N~dOff' ) 
legend ( [num2str (tankRange (m) *100) , `~ ' ] , ' .l.e.::~.t:..~~:~i' , ' no.~ ~~~alftir~-1st' ) 

end 

if sysRoots 

figure(5) 
plot (real (rootsDen) , imag (roo

g

tsDen) , ' x' , [-200 2] , [0 0] , ' k: ' 

title ' ~~~~s.e~:~ r~.; ~ts : ~ r`~~n t:~n k fY~en e~~~~ t~' f~.~~l ;~ ' ) 
xlabel ( ' ~?e~1' ) 
axis ( [-7 0 -2 . 5 2 . 5] ) 

1 egend ( ~ ~ ~~. r z ~ :~ ". s r y~ t ; :` r ~ '-1 y:~ ~ : r r .~. r~ c r r 
l :: ~ ~ ;., - _. r ) 

, ),. :J 

end 

end 

m = m + l; 
end 
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